Phys Rev E Stat Nonlin Soft Matter Phys
April 2014
We derive an exact equation governing two-particle backwards mean-squared dispersion for both deterministic and stochastic tracer particles in turbulent flows. For the deterministic trajectories, we probe the consequences of our formula for short times and arrive at approximate expressions for the mean-squared dispersion which involve second order structure functions of the velocity and acceleration fields. For the stochastic trajectories, we analytically compute an exact t3 contribution to the squared separation of stochastic paths.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2013
We solve an inverse problem for fluid particle pair statistics: we show that a time sequence of probability density functions (PDFs) of separations can be exactly reproduced by solving the diffusion equation with a suitable time-dependent diffusivity. The diffusivity tensor is given by a time integral of a conditional Lagrangian velocity structure function, weighted by a ratio of PDFs. Physical hypotheses for hydrodynamic turbulence (sweeping, short memory, mean-field) yield simpler integral formulas, including one of Kraichnan and Lundgren (K-L).
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2013
Synthetic models of Eulerian turbulence like so-called kinematic simulations (KS) are often used as computational shortcuts for studying Lagrangian properties of turbulence. These models have been criticized by Thomson and Devenish (2005), who argued on physical grounds that sweeping decorrelation effects suppress pair dispersion in such models. We derive analytical results for Eulerian turbulence modeled by Gaussian random fields, in particular for the case with zero mean velocity.
View Article and Find Full Text PDF