Background And Purpose: Routine quality control procedures are still required for sCT based on artificial intelligence (AI) to verify the performance of the generators. The aim of this study was to evaluate three generators based on AI or bulk density (BD) assignment for the patient-specific quality assurance (PSQA) of another AI-based generator in clinical routine. A patient positioning study based on 2D/2D kV-image comparing the performances of four sCT generators was also performed.
View Article and Find Full Text PDFBackground: The interest in MR-only workflows is growing with the introduction of artificial intelligence in the synthetic CT generators converting MR images into CT images. The aim of this study was to evaluate several commercially available sCT generators for two anatomical localizations.
Methods: Four sCT generators were evaluated: one based on the bulk density method and three based on deep learning methods.
Objectives: To characterise the motion of pulmonary tumours during stereotactic body radiation therapy (SBRT) and to evaluate different margins when creating the planning target volume (PTV) on a single 4D CT scan (4DCT).
Methods: We conducted a retrospective single-site analysis on 30 patients undergoing lung SBRT. Two 4DCTs (4DCT1 and 4DCT2) were performed on all patients.
Cancer Biother Radiopharm
February 2005
Introduction: Dosimetric studies for targeted radiotherapy require the quantification of activity from scintigraphic images. Quantitative imaging is difficult to achieve because of several effects that can lead to errors in activity estimates, some of which are more apparent when I-131 is considered as a source. An evaluation of these phenomena was performed by modeling the gamma camera and its behavior using Monte Carlo simulations.
View Article and Find Full Text PDF