Human and animal EEG data demonstrate that focal seizures start with low-voltage fast activity, evolve into rhythmic burst discharges and are followed by a period of suppressed background activity. This suggests that processes with dynamics in the range of tens of seconds govern focal seizure evolution. We investigate the processes associated with seizure dynamics by complementing the Hodgkin-Huxley mathematical model with the physical laws that dictate ion movement and maintain ionic gradients.
View Article and Find Full Text PDFTraditionally, it is considered that neuronal synchronization in epilepsy is caused by a chain reaction of synaptic excitation. However, it has been shown that synchronous epileptiform activity may also arise without synaptic transmission. In order to investigate the respective roles of synaptic interactions and nonsynaptic mechanisms in seizure transitions, we developed a computational model of hippocampal cells, involving the extracellular space, realistic dynamics of [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] ions, glial uptake and extracellular diffusion mechanisms.
View Article and Find Full Text PDF