Publications by authors named "Damian Rivett"

Unlabelled: Chronic lung infections are the primary cause of morbidity and early mortality in cystic fibrosis (CF) and, as such, have been the subject of a great deal of research. Subsequently, they have become one of the key paradigms for polymicrobial infections. The literature, however, has traditionally focused on the presence of pathogens in isolation or univariate measures like number of species to predict decline of lung function and ignores large swathes of data.

View Article and Find Full Text PDF
Article Synopsis
  • A pilot study explored the effects of Elexacaftor/Tezacaftor/Ivacaftor (ETI) therapy on gut microbiota, metabolomic functioning, and clinical outcomes in people with cystic fibrosis (CF), using faecal samples collected from 20 participants at multiple time points.
  • The results showed that while ETI therapy increased diversity and moved the gut microbiota composition closer to that of healthy controls, significant differences remained, particularly influenced by concurrent antibiotic treatments for lung infections.
  • The study concludes that further research is needed to better understand how CFTR modulator therapies and antibiotics affect the gut microbiome in CF patients, suggesting the use of integrated omics approaches for future investigations.*
View Article and Find Full Text PDF

Background: Chronic infection and consequent airway inflammation are the leading causes of morbidity and early mortality for people living with cystic fibrosis (CF). However, lower airway infections across a range of chronic respiratory diseases, including in CF, do not follow classical 'one microbe, one disease' concepts of infection pathogenesis. Instead, they are comprised of diverse and temporally dynamic lung infection microbiota.

View Article and Find Full Text PDF

People with cystic fibrosis (pwCF) experience a range of persistent gastrointestinal symptoms throughout life. There is evidence indicating interaction between the microbiota and gut pathophysiology in CF. However, there is a paucity of knowledge on the potential effects of CF transmembrane conductance regulator (CFTR) modulator therapies on the gut microbiome.

View Article and Find Full Text PDF

Storm surges, flooding, and the encroachment of seawater onto agricultural land are predicted to increase with climate change. These flooding events fundamentally alter many soil properties and have knock-on effects on the microbial community composition and its functioning. The hypotheses tested in this study were (1) that the extent of change (resistance) of microbial community functioning and structure during seawater flooding is a factor of pre-adaptation to the stress, and (2) if structure and function are altered, the pre-adaptation will result in communities returning to previous state prior to flooding (resilience) faster than unexposed communities.

View Article and Find Full Text PDF

Background: Regular surveillance microbiology of sputum is used in cystic fibrosis (CF) to monitor for new pathogens and target treatments. A move to remote clinics has meant greater reliance on samples collected at home and posted back. The impact of delays and sample disruption caused by posting has not been systematically assessed but could have significant implications for CF microbiology.

View Article and Find Full Text PDF

The microbial ecology of acidic mine and sulfide cave ecosystems is well characterised with respect to aquatic communities, typically revealing low taxonomic complexity and dominance by a relatively limited number of cosmopolitan acidophilic bacterial and archaeal taxa. Whilst pH, temperature, and geochemistry are recognised drivers of diversity in these ecosystems, the specific question of a possible influence of substratum mineralogy on microbial community composition remains unanswered. Here we address this void, using 81 subterranean mineral samples from a low temperature abandoned, acidic, sulfide ore mine system at Mynydd Parys (Parys Mountain in English), Wales, UK.

View Article and Find Full Text PDF

Microbiological surveillance of airway secretions is central to clinical care in cystic fibrosis (CF). However, the efficacy of microbiological culture, the diagnostic gold standard for pathogen detection, has been increasingly questioned. Here we compared culture with targeted quantitative PCR (QPCR) for longitudinal detection of 2 key pathogens, Pseudomonas aeruginosa and Staphylococcus aureus.

View Article and Find Full Text PDF

The textile industry is in crisis and under pressure to minimize the environmental impact on its practices. Bacterial cellulose (BC), a naturally occurring form of cellulose, displays properties superior to those of its cotton plant counterpart, such as enhanced purity, crystallinity, tensile strength, and water retention and is thus suitable for an array of textile applications. It is synthesized from a variety of microorganisms but is produced in most abundance by .

View Article and Find Full Text PDF

Background: Most people with cystic fibrosis (pwCF) suffer from gastrointestinal symptoms and are at risk of gut complications. Gut microbiota dysbiosis is apparent within the CF population across all age groups, with evidence linking dysbiosis to intestinal inflammation and other markers of health. This pilot study aimed to investigate the potential relationships between the gut microbiota and gastrointestinal physiology, transit, and health.

View Article and Find Full Text PDF

Common garden experiments that inoculate a standardised growth medium with synthetic microbial communities (i.e. constructed from individual isolates or using dilution cultures) suggest that the ability of the community to resist invasions by additional microbial taxa can be predicted by the overall community productivity (broadly defined as cumulative cell density and/or growth rate).

View Article and Find Full Text PDF

A recent workshop titled "Developing Models to Study Polymicrobial Infections," sponsored by the Dartmouth Cystic Fibrosis Center (DartCF), explored the development of new models to study the polymicrobial infections associated with the airways of persons with cystic fibrosis (CF). The workshop gathered 35+ investigators over two virtual sessions. Here, we present the findings of this workshop, summarize some of the challenges involved with developing such models, and suggest three frameworks to tackle this complex problem.

View Article and Find Full Text PDF

Patterns of species diversity provide fundamental insights into the underlying mechanisms and processes that regulate biodiversity. The species-time relationship (STR) has the potential to be one such pattern; in a comparable manner to its more extensively studied spatial analogue, the species-area relationship (SAR), which has been pivotal in the development of ecological models and theories. We sought to determine the mechanisms and processes that underpin STR patterns of temporal turnover by sampling bacterial communities within ten water-filled tree-holes on the same European beech tree through the course of a year.

View Article and Find Full Text PDF
Article Synopsis
  • The study looked at how the gut bacteria of babies change as they grow and how these changes relate to things like cleanliness and allergies.
  • They observed 1,303 babies who were only breast-fed and took samples of their poop at different ages to see how their gut bacteria evolved.
  • Results showed that babies had different types of gut bacteria based on their birth method, and certain bacteria were linked to skin conditions as they got older.
View Article and Find Full Text PDF

Background: Inhaled corticosteroids (ICS) are the mainstay of asthma treatment, but evidence suggests a link between ICS usage and increased rates of respiratory infections. We assessed the composition of the asthmatic airways microbiome in asthma patients taking low and high dose ICS and the stability of the microbiome over a 2 week period.

Methods: We prospectively recruited 55 individuals with asthma.

View Article and Find Full Text PDF
Article Synopsis
  • Peatlands are important wetland areas that help store carbon and support various plants and animals, but they are being damaged by human activities.
  • Scientists have made progress in restoring peatlands, but we still need to learn how tiny living things in the soil (microbes) help these ecosystems work and recover from problems.
  • To improve peatland restoration, we need to study microbial communities better, create tools to monitor their health, and work with different experts to develop effective restoration practices.
View Article and Find Full Text PDF

Background: Chronic infection and concomitant airway inflammation is the leading cause of morbidity and mortality for people living with cystic fibrosis (CF). Although chronic infection in CF is undeniably polymicrobial, involving a lung microbiota, infection surveillance and control approaches remain underpinned by classical aerobic culture-based microbiology. How to use microbiomics to direct clinical management of CF airway infections remains a crucial challenge.

View Article and Find Full Text PDF

Interactions between bacteria govern the progression of respiratory infections; however, the mechanisms underpinning these interactions are still unclear. Understanding how a bacterial species comes to dominate infectious communities associated with respiratory infections has direct relevance to treatment. In this study, Burkholderia, Pseudomonas, and Staphylococcus species were isolated from the sputum of an individual with Cystic Fibrosis and assembled in a fully factorial design to create simple microcosms.

View Article and Find Full Text PDF

A major unresolved question is how bacteria living in complex communities respond to environmental changes. In communities, biotic interactions may either facilitate or constrain evolution depending on whether the interactions expand or contract the range of ecological opportunities. A fundamental challenge is to understand how the surrounding biotic community modifies evolutionary trajectories as species adapt to novel environmental conditions.

View Article and Find Full Text PDF

Waste metalworking fluids (MWFs) are highly biocidal resulting in real difficulties in the, otherwise favoured, bioremediation of these high chemical oxygen deman (COD) wastes anaerobically in bioreactors. We have shown, as a proof of concept, that it is possible to establish an anaerobic starter culture using strains isolated from spent MWFs which are capable of reducing COD or, most significantly, methanogenesis in this biocidal waste stream. Bacterial strains (n = 99) and archaeal methanogens (n = 28) were isolated from spent MWFs.

View Article and Find Full Text PDF

Bacterial communities are essential for the functioning of the Earth's ecosystems . A key challenge is to quantify the functional roles of bacterial taxa in nature to understand how the properties of ecosystems change over time or under different environmental conditions . Such knowledge could be used, for example, to understand how bacteria modulate biogeochemical cycles , and to engineer bacterial communities to optimize desirable functional processes .

View Article and Find Full Text PDF

Successful microbial invasions are determined by a species' ability to occupy a niche in the new habitat whilst resisting competitive exclusion by the resident community. Despite the recognised importance of biotic factors in determining the invasiveness of microbial communities, the success and impact of multiple concurrent invaders on the resident community has not been examined. Simultaneous invasions might have synergistic effects, for example if resident species need to exhibit divergent phenotypes to compete with the invasive populations.

View Article and Find Full Text PDF

Bacterial diversity underpins many ecosystem functions; however, the impact of within-species variation on the relationship between diversity and function remains unclear. Processes involving strain differentiation, such as niche radiation, are often overlooked in studies that focus on phylogenetic variation. This study used bacterial isolates assembled in two comparable microcosm experiments to test how species variation affected ecosystem function.

View Article and Find Full Text PDF

The number of invaders and the timing of invasion are recognized as key determinants of successful invasions. Despite the recognized importance of "propagule pressure," invasion ecology has largely focused on how characteristics of the native community confer invasion resistance. We simultaneously manipulated community composition and invader propagule pressure in microcosm communities of freshwater bacteria.

View Article and Find Full Text PDF