Publications by authors named "Damian R Page"

Unlabelled: Understanding the molecular basis of basal cell carcinoma (BCC) has led to development of Hedgehog pathway inhibitors (HPIs) for patients with advanced forms of BCC (aBCC). A practical definition of aBCC as a distinct disease entity is unavailable, and epidemiological information is limited. To conduct the RONNIE study to describe characteristics, treatment patterns, and outcomes of patients with aBCC during the period preceding HPI introduction, as well as results from patients with locally advanced BCC (laBCC).

View Article and Find Full Text PDF

Background: Vismodegib, a first-in-class Hedgehog-pathway inhibitor, is approved for use in adults with advanced basal-cell carcinoma. Patients with multiple basal-cell carcinomas, including those with basal-cell nevus (Gorlin) syndrome, need extended treatment. We assessed the safety and activity of two long-term intermittent vismodegib dosing regimens in patients with multiple basal-cell carcinomas.

View Article and Find Full Text PDF

Genomic imprinting is exclusive to mammals and seed plants and refers to parent-of-origin-dependent, differential transcription. As previously shown in mammals, studies in Arabidopsis have implicated DNA methylation as an important hallmark of imprinting. The current model suggests that maternally expressed imprinted genes, such as MEDEA (MEA), are activated by the DNA glycosylase DEMETER (DME), which removes DNA methylation established by the DNA methyltransferase MET1.

View Article and Find Full Text PDF

The clock-regulated RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein) influences circadian oscillations of its transcript by negative feedback at the post-transcriptional level. Here we show that site-specific mutation of one conserved arginine to glutamine within the RNA recognition motif impairs binding of recombinant AtGRP7 to its pre-mRNA in vitro. This correlates with the loss of the negative auto-regulation in vivo: in transgenic plants constitutively overexpressing AtGRP7 (AtGRP7-ox), a shift occurs to an alternatively spliced AtGRP7 transcript that decays rapidly, and thus does not accumulate to high levels.

View Article and Find Full Text PDF

In mammals and seed plants, a subset of genes is regulated by genomic imprinting where an allele's activity depends on its parental origin. The parental conflict theory suggests that genomic imprinting evolved after the emergence of an embryo-nourishing tissue (placenta and endosperm), resulting in an intragenomic parental conflict over the allocation of nutrients from mother to offspring. It was predicted that imprinted genes, which arose through antagonistic co-evolution driven by a parental conflict, should be subject to positive darwinian selection.

View Article and Find Full Text PDF

Initiation of X inactivation depends on the coordinated expression of the sense/antisense pair Xist/Tsix. We show here that a precisely defined Xist promoter region flanked by CTCF is maintained by Tsix in a heterochromatic-like state in undifferentiated embryonic stem (ES) cells and shifts to a pseudoeuchromatic structure upon Tsix truncation. We further demonstrate that the epigenetic state of the Xist 5' region prior to differentiation predicts the efficiency of transcriptional machinery recruitment to the Xist promoter during differentiation.

View Article and Find Full Text PDF

The imprinted Arabidopsis Polycomb group (PcG) gene MEDEA (MEA), which is homologous to Enhancer of Zeste [E(Z)], is maternally required for normal seed development. Here we show that, unlike known mammalian imprinted genes, MEA regulates its own imprinted expression: It down-regulates the maternal allele around fertilization and maintains the paternal allele silent later during seed development. Autorepression of the maternal MEA allele is direct and independent of the MEA-FIE (FERTILIZATION-INDEPENDENT ENDOSPERM) PcG complex, which is similar to the E(Z)-ESC (Extra sex combs) complex of animals, suggesting a novel mechanism.

View Article and Find Full Text PDF

The maternally expressed Arabidopsis thaliana Polycomb group protein MEDEA (MEA) controls expression of the MADS-box gene PHERES1 (PHE1). Here, we show that PHE1 is mainly paternally expressed but maternally repressed and that this maternal repression of PHE1 breaks down in seeds lacking maternal MEA activity. Because Polycomb group proteins control parental imprinting in mammals as well, the independent recruitment of similar protein machineries for the imprinting of genes is a notable example of convergent evolution.

View Article and Find Full Text PDF

In higher plants, double fertilisation initiates seed development. One sperm cell fuses with the egg cell and gives rise to the embryo, the second sperm cell fuses with the central cell and gives rise to the endosperm. The endosperm develops as a syncytium with the gradual organisation of domains along an anteroposterior axis defined by the position of the embryo at the anterior pole and by the attachment to the placenta at the posterior pole.

View Article and Find Full Text PDF

Transposon activity is known to cause chromosome rearrangements in the host genome. Surprisingly, extremely little is known about Dissociation (Ds)-induced chromosome rearrangements in Arabidopsis, where Ds is intensively used for insertional mutagenesis. Here, we describe three Arabidopsis mutants with reduced fertility and propose that excision of a hybrid Ds element induced a large genomic deletion flanking Ds.

View Article and Find Full Text PDF

Molecular genetic studies rely on well-characterized organisms that can be easily manipulated. Arabidopsis thaliana--the model system of choice for plant biologists--allows efficient analysis of plant function, combining classical genetics with molecular biology. Although the complete sequence of the Arabidopsis genome allows the rapid discovery of the molecular basis of a characterized mutant, functional characterization of the Arabidopsis genome depends on well-designed forward genetic screens, which remain a powerful strategy to identify genes that are involved in many aspects of the plant life cycle.

View Article and Find Full Text PDF