The increasing availability of biomedical data creates valuable resources for developing new deep learning algorithms to support experts, especially in domains where collecting large volumes of annotated data is not trivial. Biomedical data include several modalities containing complementary information, such as medical images and reports: images are often large and encode low-level information, while reports include a summarized high-level description of the findings identified within data and often only concerning a small part of the image. However, only a few methods allow to effectively link the visual content of images with the textual content of reports, preventing medical specialists from properly benefitting from the recent opportunities offered by deep learning models.
View Article and Find Full Text PDFThe digitalization of clinical workflows and the increasing performance of deep learning algorithms are paving the way towards new methods for tackling cancer diagnosis. However, the availability of medical specialists to annotate digitized images and free-text diagnostic reports does not scale with the need for large datasets required to train robust computer-aided diagnosis methods that can target the high variability of clinical cases and data produced. This work proposes and evaluates an approach to eliminate the need for manual annotations to train computer-aided diagnosis tools in digital pathology.
View Article and Find Full Text PDFSimulating nature and in particular processes in particle physics require expensive computations and sometimes would take much longer than scientists can afford. Here, we explore ways to a solution for this problem by investigating recent advances in generative modeling and present a study for the generation of events from a physical process with deep generative models. The simulation of physical processes requires not only the production of physical events, but to also ensure that these events occur with the correct frequencies.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
April 2021
The radiative transfer equations are well known, but radiation parametrizations in atmospheric models are computationally expensive. A promising tool for accelerating parametrizations is the use of machine learning techniques. In this study, we develop a machine learning-based parametrization for the gaseous optical properties by training neural networks to emulate a modern radiation parametrization (RRTMGP).
View Article and Find Full Text PDF