Publications by authors named "Damian Pawolski"

The species-specifically patterned biosilica cell walls of diatoms are paradigms for biological mineral morphogenesis and the evolution of lightweight materials with exceptional mechanical performance. Biosilica formation is a membrane-mediated process that occurs in intracellular compartments, termed silica deposition vesicles (SDVs). Silicanin-1 (Sin1) is a highly conserved protein of the SDV membrane, but its role in biosilica formation has remained elusive.

View Article and Find Full Text PDF

The genetically-controlled formation of complex-shaped inorganic materials by living organisms is an intriguing phenomenon. It illustrates our incomplete understanding of biological morphogenesis and demonstrates the feasibility of ecologically benign routes for materials technology. Amorphous SiO (silica) is taxonomically the most widespread biomineral, with diatoms, a large group of single-celled microalgae, being the most prolific producers.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored how silica (SiO) is produced in diatoms, focusing on the previously unexamined role of membrane proteins in this process.
  • They identified Silicanin-1 (Sin1), a conserved protein in diatoms, as a key player in the formation of silica within special compartments called silica deposition vesicles (SDVs).
  • Sin1 interacts with long-chain polyamines and helps in organizing the organic matrix that guides silica formation, highlighting its crucial role in diatom biomineralization.
View Article and Find Full Text PDF

Pathogen-specific acquired immunity in bacteria is mediated by the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas systems. Thermus thermophilus strain HB8 contains CRISPR systems of several major subtypes (type I, IIIA and IIIB), and has become a widely studied model for CRISPR biology. We have selected two highly expressed CRISPR spacers, crRNA 2.

View Article and Find Full Text PDF

The nano- and micropatterned biosilica cell walls of diatoms are remarkable examples of biological morphogenesis and possess highly interesting material properties. Only recently has it been demonstrated that biosilica-associated organic structures with specific nanopatterns (termed insoluble organic matrices) are general components of diatom biosilica. The model diatom Thalassiosira pseudonana contains three types of insoluble organic matrices: chitin meshworks, organic microrings, and organic microplates, the latter being described in the present study for the first time.

View Article and Find Full Text PDF

For antiviral drug design, especially in the field of influenza virus research, potent multivalent inhibitors raise high expectations for combating epidemics and pandemics. Among a large variety of covalent and non-covalent scaffold systems for a multivalent display of inhibitors, we created a simple supramolecular platform to enhance the antiviral effect of our recently developed antiviral Peptide B (PeB(GF)), preventing binding of influenza virus to the host cell. By conjugating the peptide with stearic acid to create a higher-order structure with a multivalent display, we could significantly enhance the inhibitory effect against the serotypes of both human pathogenic influenza virus A/Aichi/2/1968 H3N2, and avian pathogenic A/FPV/Rostock/34 H7N1 in the hemagglutination inhibition assay.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: