The impact of perforation patterns on the compressive strength of cardboard packaging is a critical concern in the packaging industry, where optimizing material usage without compromising structural integrity is essential. This study aims to investigate how different perforation designs affect the load-bearing capacity of cardboard boxes. Utilizing finite element method (FEM) simulations, we assessed the compressive strength of packaging made of various types of corrugated cardboards, including E, B, C, EB, and BC flutes with different heights.
View Article and Find Full Text PDFThe article presents a simplified method for determining the strength of corrugated board packaging subjected to dynamic transport loads. The proposed algorithm consists of several calculation steps: (1) a static analysis of the compressive strength of the package, (2) an analysis of random vibrations in the frequency domain used to determine the resonance frequencies and (3) a dynamic analysis of the package loaded with computed resonant frequencies. For this purpose, numerical models of the static compression test of the packaging before and after the dynamic analysis of the package subjected to general transport loads were developed.
View Article and Find Full Text PDFThe finite element method is a widely used numerical method to analyze structures in virtual space. This method can be used in the packaging industry to determine the mechanical properties of corrugated boxes. This study aims to create and validate a numerical model to predict the compression force of corrugated cardboard boxes by considering the influence of different cutout configurations of sidewalls.
View Article and Find Full Text PDFMaterials (Basel)
February 2023
There are many possible sources of potential geometrical inaccuracies in each layer of corrugated board during its manufacture. These include, among others, the processes of wetting the corrugated layers during profiling, the process of accelerated drying, the gluing process, and any mechanical impact of the pressure rollers on the cardboard. Work taking into account all the above effects in numerical modeling is not well described in the literature.
View Article and Find Full Text PDFThis article presents a modified configuration of the box compression test (BCT), which reflects the actual behavior of the vegetable or fruit trays during transport and storage. In traditional load capacity tests, trays are treated as classic transport boxes, i.e.
View Article and Find Full Text PDFMaterials (Basel)
January 2023
Trays in which fruit and vegetables are transported over vast distances are not only stored in extreme climatic conditions but are also subjected to long-term loads. Therefore, it is very important to design them correctly and select the optimal raw material for their production. Geometric parameters that define the shape of the packaging may also be optimized in the design process.
View Article and Find Full Text PDFIn the face of the reality that unexpectedly mobilized the governments of most central European countries (including Poland), the development of renewable energy sources (RES) seems to be an important direction. Therefore, both wind parks and solar farms will be constructed at double speed for energetic independence. This urgency makes the market of producers of structures for mounting solar panels also need to adapt quickly to the new situation.
View Article and Find Full Text PDFDesigning corrugated board packaging is a real challenge, especially when the packaging material comes from multiple recycling. Recycling itself is a pro-ecological and absolutely necessary process, but the mechanical properties of materials that are processed many times deteriorate with the number of cycles. Manufacturers are trying to use unprecedented design methods to preserve the load-bearing capacity of packaging, even when the material itself is of deteriorating quality.
View Article and Find Full Text PDFThe optimal selection of the composition of corrugated cardboard dedicated to specific packaging structures is not an easy task. The use of lighter boards saves material, but at the same time increases the risk of not meeting the guaranteed load capacity. Therefore, the answer to the question "in which layer the basis weight of the paper should be increased?" is not simple or obvious.
View Article and Find Full Text PDFIn the modern world, all manufacturers strive for the optimal design of their products. This general trend is recently also observed in the corrugated board packaging industry. Colorful prints on displays, perforations in shelf-ready-packaging and various types of ventilation holes in trays, although extremely important for ergonomic or functional reasons, weaken the strength of the box.
View Article and Find Full Text PDFThe corrugated board packaging industry is increasingly using advanced numerical tools to design and estimate the load capacity of its products. This is why numerical analyses are becoming a common standard in this branch of manufacturing. Such trends cause either the use of advanced computational models that take into account the full 3D geometry of the flat and wavy layers of corrugated board, or the use of homogenization techniques to simplify the numerical model.
View Article and Find Full Text PDF