Previous literature suggests that correcting ongoing movements is more effective when using the dominant limb and seeing with the dominant eye. Specifically, individuals are more effective at adjusting their movement to account for an imperceptibly perturbed or changed target location (i.e.
View Article and Find Full Text PDFObserving a physical interaction between individuals (e.g., observing friends shaking hands) or between an object and an individual (e.
View Article and Find Full Text PDFDuring reaching and grasping movements tactile processing is typically suppressed. However, during a reception or catching task, the object can still be acquired but without suppressive processes related to movement execution. Rather, tactile information may be facilitated as the object approaches in anticipation of object contact and the utilization of tactile feedback.
View Article and Find Full Text PDFOur perception of sensory events can be altered by action, but less is known about how our perception can be altered by action observation. For example, our ability to detect tactile stimuli is reduced when our limb is moving, and task-relevance and movement speed can alter such tactile detectability. During action observation, however, the relationship between tactile processing and such modulating factors is not known.
View Article and Find Full Text PDFWe investigated the impairment of position sense associated with muscle fatigue. In , participants performed learned eccentric extension (22°/s) movements of the elbow as the arm was pulled through the horizontal plane without vision of the arm. They opened their closed right hand when they judged it to be passing through a target.
View Article and Find Full Text PDFIt has been argued that exercise-induced muscle fatigue and tendon vibration can alter proprioceptive estimates of limb position. While exercise-induced muscle fatigue may also affect central efferent processes related to limb position sense, tendon vibration specifically targets peripheral afferent signals. It is unclear, however, whether either of these perturbations (i.
View Article and Find Full Text PDFA limb's initial position is often biased to the right of the midline during activities of daily living. Given this specific initial limb position, visual cues of the limb become first available to the ipsilateral eye relative to the contralateral eye. The current study investigated online control of the dominant limb as a function of having visual cues available to the ipsilateral or contralateral eye, in relation to the initial start position of the limb.
View Article and Find Full Text PDFWhen we move, our ability to detect tactile events on the moving limb is reduced (e.g., movement-related tactile suppression).
View Article and Find Full Text PDFThe authors investigated how visual information from the nondominant and dominant eyes are utilized to control ongoing dominant hand movements. Across 2 experiments, participants performed upper-limb pointing movements to a stationary target or an imperceptibly shifted target under monocular-dominant, monocular-nondominant, and binocular viewing conditions. Under monocular-dominant viewing conditions, participants exhibited better endpoint precision and accuracy.
View Article and Find Full Text PDF