Publications by authors named "Damian Janecki"

LINE-1 (L1) retrotransposons are mobile genetic elements that create new genomic insertions by a copy-paste mechanism involving L1 RNA/RNP intermediates. L1 encodes two ORFs, of which L1-ORF2p nicks genomic DNA and reverse transcribes L1 mRNA using the nicked DNA as a primer which base-pairs with poly(A) tail of L1 mRNA. To better understand the importance of non-templated L1 3' ends' dynamics and the interplay between L1 3' and 5' ends, we investigated the effects of genomic knock-outs and temporal knock-downs of XRN1, DCP2, and other factors.

View Article and Find Full Text PDF

Nanos RNA-binding proteins are critical factors of germline development throughout the animal kingdom and their dysfunction causes infertility. During evolution, mammalian Nanos paralogues adopted divergent roles in germ cell biology. However, the molecular basis behind this divergence, such as their target mRNAs, remains poorly understood.

View Article and Find Full Text PDF

The p53 protein is one of the major transcriptional factors which guards cell homeostasis. Here, we showed that poly(C)-binding protein 2 (PCBP2) can bind directly to the 5' terminus of p53 mRNA by means of electrophoretic mobility shift assay. Binding sites of PCBP2 within this region of p53 mRNA were mapped using Pb2+-induced cleavage and SAXS methods.

View Article and Find Full Text PDF

Background: The aim of this study was to determine whether computer-aided training (CAT) of motor tasks would increase muscle activity and change its spatial distribution in a patient with a bilateral upper-limb congenital transverse deficiency. We believe that our study makes a significant contribution to the literature because it demonstrates the usefulness of CAT in promoting the neuromuscular adaptation in people with congenital limb deficiencies and altered body image.

Case Presentation: The patient with bilateral upper-limb congenital transverse deficiency and the healthy control subject performed 12 weeks of the CAT.

View Article and Find Full Text PDF

The p53 protein is one of the transcription factors responsible for cell cycle regulation and prevention of cancer development. Its expression is regulated at the transcriptional, translational and post-translational levels. Recent years of research have shown that the 5' terminus of p53 mRNA plays an important role in this regulation.

View Article and Find Full Text PDF

While two mouse NANOS paralogues, NANOS2 and NANOS3, are crucial for maintenance of germ cells by suppression of apoptosis, the mouse NANOS1 paralogue does not seem to regulate these processes. Previously, we described a human NANOS1 p.[(Pro34Thr);(Ser83del)] mutation associated with the absence of germ cells in seminiferous tubules of infertile patients, which might suggest an anti-apoptotic role of human NANOS1.

View Article and Find Full Text PDF

Mammalian Pumilio (PUM) proteins are sequence-specific, RNA-binding proteins (RBPs) with wide-ranging roles. They are involved in germ cell development, which has functional implications in development and fertility. Although human PUM1 and PUM2 are closely related to each other and recognize the same RNA binding motif, there is some evidence for functional diversity.

View Article and Find Full Text PDF

Regulation of proliferation, apoptosis and cell cycle is crucial for the physiology of germ cells. Their malfunction contributes to infertility and germ cell tumours. The kinesin KIF18A is an important regulator of those processes in animal germ cells.

View Article and Find Full Text PDF

In this review, the latest research concerning the structure and function of the 5'-terminal region of p53 mRNA was discussed. Special attention was focused on defined structural motifs which are present in this region, as well as their conservation and plausible functional role in translation. It is known that the length of the 5'-terminal region and the structural environment of initiation codons can strongly modulate translation initiation.

View Article and Find Full Text PDF
Article Synopsis
  • Pumilio (PUM) proteins are important RNA-binding proteins that help control gene expression by interacting with target mRNAs, particularly through specific regions called PUM-binding elements (PBEs) in the mRNA's 3' untranslated region.
  • This study reveals differences in how PUM1 and PUM2 regulate the mRNA target SIAH1, with PUM1 functioning independently of PBEs, and highlights distinctive binding patterns of the PUM proteins with SIAH1's mRNA.
  • Notably, this research also discovers that NANOS3 can directly bind to the SIAH1 mRNA without needing PUM-related elements, which is a novel finding, and shows how specific mutations in NAN
View Article and Find Full Text PDF

SPIN1 is necessary for normal meiotic progression in mammals. It is overexpressed in human ovarian cancers and some cancer cell lines. Here, we examined the functional significance and regulation of SPIN1 and SPIN3 in the TCam-2 human seminoma cell line.

View Article and Find Full Text PDF

The aim of this study was to assess low-frequency fatigue as a double to single twitch ratio after repeated eccentric exercise of the elbow flexors. Maximal isometric torque, single and double twitch responses and low-frequency fatigue were assessed on the elbow flexors in 16 untrained male volunteers before, immediately after, 24 and 48 hours following two bouts of eccentric exercise consisted of 30 repetitions of lowering a dumbbell adjusted to ~75% of each individual's maximal isometric torque. Maximal isometric torque and electrically evoked responses decreased significantly in all measurements after the first bout of eccentric exercise (p < 0.

View Article and Find Full Text PDF

We report the case of a female patient suffering from a 46,XY disorder of sexual development (DSD) with complete gonadal dysgenesis and Wiedemann-Steiner Syndrome (WDSTS). The coexistence of these 2 conditions has not yet been reported. Using whole exome sequencing and comparative genome hybridization array, we identified a de novo MLL/KMT2A gene nonsense mutation which explains the WDSTS phenotype.

View Article and Find Full Text PDF

Our study aimed to determine whether electrical and mechanical factors contributing to acute or long-term maximal torque reduction and muscle soreness due to submaximal eccentric exercise (ECC) are elbow-joint-angle specific and to what extent the joint angle affects the contribution of antagonist coactivation to this torque reduction. Maximal isometric torque (MIT), muscle soreness assessment, agonist electromechanical activities, and antagonist coactivation during the maximal voluntary contraction (MVC) were measured at elbow joint angles of 60°, 90°, and 150° before ECC, immediately after exercise, and 24, 48, 72, and 120 hr after exercise. ECC causes an immediate decrease in MIT as well as increased antagonist coactivation at three angles.

View Article and Find Full Text PDF

The purpose of this study was to assess if the protective adaptation after eccentric exercise affects changes of twitch contractile properties of the biceps brachii muscle. Maximal isometric torque (MVC), twitch contractile properties, muscle soreness, and relaxed elbow angle (RANG) assessments were measured in 12 untrained, right-handed male volunteers (age, 23 ± 2 years; height, 182 ± 5 cm; mass, 75 ± 7 kg) before, immediately after, 48 h, and 120 h following each bout of eccentric exercise that consisted of 30 repetitions of lowering a dumbbell adjusted to 75% of each individual's maximal isometric torque of the right elbow flexors. MVC, peak twitch torque, maximal rate of twitch torque development, maximal rate of relaxation, muscle soreness, and RANG changes were significantly attenuated after the second bout of eccentric exercise when compared with the first bout.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to assess if the protective adaptation after eccentric exercise affects changes in passive stiffness of the biceps brachii muscle.

Design: A within-group repeated measures design was used to compare changes in passive muscle stiffness after eccentric exercise between the first and second bouts separated by 2-3 weeks.

Method: Maximal isometric torque, passive muscle stiffness and soreness were measured on the right elbow flexors in 14 untrained male volunteers before, immediately after, 24, 48 and 120 h following each bout of eccentric exercise that consisted of 30 repetitions of lowering a dumbbell adjusted to 75% of each individual's maximal isometric torque.

View Article and Find Full Text PDF