Publications by authors named "Damian Grillo"

In this work we implement a new methodology to study structural and mechanical properties of systems having spherical and planar symmetries throughout Molecular Dynamics simulations. This methodology is applied here to a drug delivery system based in polymersomes, as an example. The chosen model drug was the local anesthetic prilocaine due to previous parameterization within the used coarse grain scheme.

View Article and Find Full Text PDF

In this work, we present results of coarse-grained simulations to study the encapsulation of prilocaine (PLC), both neutral and protonated, on copolymer bilayers through molecular dynamics simulations. Using a previously validated membrane model, we have simulated loaded bilayers at different drug concentrations and at low (protonated PLC) and high (neutral PLC) pH levels. We have characterized key structural parameters of the loaded bilayers in order to understand the effects of encapsulation of PLC on the bilayer structure and mechanical properties.

View Article and Find Full Text PDF

This paper presents a new model for polymersomes developed using a poly(ethylene oxide)-poly(butadiene) diblock copolymer bilayer. The model is based on a coarse-grained approach using the MARTINI force field. Since no MARTINI parameters exist for poly(butadiene), we have refined these parameters using quantum mechanical calculations and molecular dynamics simulations.

View Article and Find Full Text PDF

Imatinib mesylate, 4-(4-methyl-piperazin-1-ylmethyl)-N-u[4-methyl-3-(4-pyridin-3-yl)pyrimidine-2-ylamino)phenyl]benzamide methanesulfonate is a therapeutic drug that is approved for the treatment of chronic myelogeneous leukemia (CML) and gastrointestinal stromal tumors (GIST). It is known that imatinib mesylate exists in two polymorphic forms α and β. However, β-form is more stable than the α-form.

View Article and Find Full Text PDF

Following on from the success of the previous crystal structure prediction blind tests (CSP1999, CSP2001, CSP2004 and CSP2007), a fifth such collaborative project (CSP2010) was organized at the Cambridge Crystallographic Data Centre. A range of methodologies was used by the participating groups in order to evaluate the ability of the current computational methods to predict the crystal structures of the six organic molecules chosen as targets for this blind test. The first four targets, two rigid molecules, one semi-flexible molecule and a 1:1 salt, matched the criteria for the targets from CSP2007, while the last two targets belonged to two new challenging categories - a larger, much more flexible molecule and a hydrate with more than one polymorph.

View Article and Find Full Text PDF

Crystal structures of polymorphs α and β of imatinib mesylate were obtained. Thermal behavior and grinding effects were studied by X-ray powder diffraction and differential scanning calorimetry techniques. Molecules in forms α and β exhibit significant conformational differences due to dissimilar intramolecular interactions, which stabilize their molecular conformations.

View Article and Find Full Text PDF