In this paper, we compare three energy harvesting systems in which we introduce additional bumpers whose mathematical model is mapped with a non-linear characteristic based on the hyperbolic sine Fibonacci function. For the analysis, we construct non-linear two-well, three-well and four-well systems with a cantilever beam and permanent magnets. In order to compare the effectiveness of the systems, we assume comparable distances between local minima of external wells and the maximum heights of potential barriers.
View Article and Find Full Text PDFThe basic types of multi-stable energy harvesters are bistable energy harvesting systems (BEH) and tristable energy harvesting systems (TEH). The present investigations focus on the analysis of BEH and TEH systems, where the corresponding depth of the potential well and the width of their characteristics are the same. The efficiency of energy harvesting for TEH and BEH systems assuming similar potential parameters is provided.
View Article and Find Full Text PDFThe subject of the research contained in this paper is a new design solution for an energy harvesting system resulting from the combination of a quasi-zero-stiffness energy harvester and a two-stage flexible cantilever beam. Numerical tests were divided into two main parts-analysis of the dynamics of the system due to periodic, quasiperiodic, and chaotic solutions and the efficiency of energy generation. The results of numerical simulations were limited to zero initial conditions as they are the natural position of the static equilibrium.
View Article and Find Full Text PDFThe subject of the model research contained in this paper is a new design solution of the energy harvesting system with a star-shaped structure of elastic elements and variable configuration. Numerical experiments focused mainly on the assessment of the configuration of elastic elements in the context of energy harvesting efficiency. The results of computer simulations were limited to zero initial conditions as it is the natural position of the static equilibrium.
View Article and Find Full Text PDFThe piezoelectric energy-harvesting system with double-well characteristics and hysteresis in the restoring force is studied. The proposed system consists of a bistable oscillator based on a cantilever beam structure. The elastic force potential is modified by magnets.
View Article and Find Full Text PDFUnlabelled: PURPOSE OF THE PAPER: This paper is an attempt to mathematically describe the mastication organ muscle functioning, taking into consideration the impact of the central nervous system.
Material: To conduct model tests, three types of craniums were prepared: short, normal, and long. The necessary numeric data, required to prepare the final calculation models of different craniofacial types, were used to identify muscle and occlusion forces generated by muscles in the area of incisors and molars.