Guided tissue regeneration and guided bone regeneration membranes are some of the most common products used for bone regeneration in periodontal dentistry. The main disadvantage of commercially available membranes is their lack of bone cell stimulation and easy bacterial colonization. The aim of this work was to design and fabricate a new membrane construct composed of electrospun poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) fibers sonocoated with layers of nanoparticles with specific properties, i.
View Article and Find Full Text PDFBackground: Periimplantitis is continuously one of major threats for the uneventful functioning of dental implants. Current approaches of drug delivery systems are being more commonly implemented into oral- and maxillofacial biomaterials in order to decrease the risk of implant failure due to bacterial infection. Silver nanoparticles and their compounds have been proven in eradicating oral bacteria responsible for peri-implant infections.
View Article and Find Full Text PDFMedical implant use is associated with a risk of infection caused by bacteria on their surface. Implants with a surface that has both bone growth-promoting properties and antibacterial properties are of interest in orthopedics. In the current study, we fabricated a bioactive coating of hydroxyapatite nanoparticles on polyether ether ketone (PEEK) using the sonocoating method.
View Article and Find Full Text PDF