Publications by authors named "Damian De Andres"

Background: Long non-coding RNAs (lncRNAs) are involved in several immune processes, including the immune response to vaccination, but most of them remain uncharacterised in livestock species. The mechanism of action of aluminium adjuvants as vaccine components is neither not fully understood.

Results: We built a transcriptome from sheep PBMCs RNA-seq data in order to identify unannotated lncRNAs and analysed their expression patterns along protein coding genes.

View Article and Find Full Text PDF

Visna/Maedi virus (VMV) is a lentivirus that infects the cells of the monocyte/macrophage lineage in sheep, goats and wild ruminants. Infection with VMV causes a multisystemic inflammatory disorder, which includes pneumonia, encephalitis, mastitis or arthritis. The immune response to VMV infection is complex, and the infection and pathogenesis of this virus are not totally characterized yet.

View Article and Find Full Text PDF

Small Ruminant Lentiviruses (SRLV) are highly prevalent retroviruses with significant genetic diversity and antigenic heterogeneity that cause a progressive wasting disease of sheep called Maedi-visna. This work provides a systematic review and meta-analysis of the last 40 years (1981-2020) of scientific publications on SRLV individual and flock prevalence. Fifty-eight publications and 314 studies were included.

View Article and Find Full Text PDF

Small ruminant lentiviruses (SRLV) cause an incurable multiorganic disease widely spread in sheep and goats that disturbs animal welfare and production. In the absence of a vaccine, control measures have been traditionally based on early diagnosis and breeding with virus-inactivated colostrum with segregation of seropositive animals. However, antigenic heterogeneity, poor antibody production due to low viral load, and single strain design of most available ELISA, pose a threat to SRLV diagnosis.

View Article and Find Full Text PDF

Aluminum (Al) hydroxide is an effective adjuvant used in sheep vaccines. However, Al-adjuvants have been implicated as potential contributors to a severe wasting syndrome in sheep-the so-called ovine autoimmune-inflammatory syndrome induced by adjuvants (ASIA syndrome). This work aimed to characterize the effects of the repetitive injection of Al-hydroxide containing products in lambs.

View Article and Find Full Text PDF

Aluminum (Al)-based salts are widely used adjuvants in ruminants and other species to strengthen the immune response elicited against vaccine antigen(s). However, they can lead to the formation of long-lasting granulomas composed of abundant activated macrophages. Small ruminant lentiviruses (SRLV) are widely distributed macrophage-tropic retroviruses that cause persistent infections in sheep and goats.

View Article and Find Full Text PDF
Article Synopsis
  • Aluminium hydroxide adjuvants are widely used in vaccines for livestock and humans, but their effects on the central nervous system are not well-studied.
  • In a study, lambs were treated with various aluminium-containing vaccines, aluminium hydroxide, or mock injections over 16 months, and brain samples were analyzed for gene and miRNA expression.
  • The findings indicated that aluminium hydroxide alone significantly altered brain gene expression, impacting neurological functions and suggesting potential mitochondrial dysfunction, which may require further investigation for possible health implications.
View Article and Find Full Text PDF

Small ruminant lentiviruses (SRLVs) are endemic in most areas of Europe, causing a chronic infection and a multisystemic disease affecting the udder, carpal joints, lungs, and central nervous system. Due to the lack of treatments and protective vaccination strategies, infection control is focused on the identification of infected animals through serological or molecular techniques. However, antigenic and genetic heterogeneity of SRLVs represent a clear drawback for diagnosis.

View Article and Find Full Text PDF

Small ruminant lentiviruses (SRLVs) are widely spread in the ovine and caprine populations, causing an incurable disease affecting animal health and production. Vaccine development is hindered owing to the high genetic heterogeneity of lentiviruses and the selection of T-cell and antibody escape mutants, requiring antigen delivery optimization. Sendai virus (SeV) is a respiratory paramyxovirus in mice that has been recognized as a potent inducer of innate immune responses in several species, including mouse and human.

View Article and Find Full Text PDF

The use of vaccines containing aluminum (Al) adjuvants is widespread in ovine production. Al adjuvants induce an effective immune-response but lead to the formation of post-vaccination granulomas from which Al can disseminate. This work aims to study the accumulation of Al in the central nervous system of sheep subcutaneously inoculated with Al-hydroxide containing products.

View Article and Find Full Text PDF

Sheep health management strategies often include the use of aluminum (Al)-containing vaccines. These products were associated with the appearance of the ovine autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome), which included an array of ethological changes in the affected animals. The aim of this pilot study was to investigate cognitive and behavioral changes in sheep subjected to a protocol of repetitive inoculation with Al-containing products.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) are short endogenous, single-stranded, noncoding small RNA molecules of approximately 22 nucleotides in length. They regulate gene expression posttranscriptionally by silencing mRNA expression, thus orchestrating many physiological processes. The Small Ruminant Lentiviruses (SRLV) group includes the Visna Maedi Virus (VMV) and Caprine Arthritis Encephalitis (CAEV) viruses, which cause a disease in sheep and goats characterized by pneumonia, mastitis, arthritis and encephalitis.

View Article and Find Full Text PDF

There have been few studies on the effect of aluminum hydroxide adjuvant and its influence on the immune response to vaccination. In this study, lambs received a parallel subcutaneous treatment with either commercial vaccines containing aluminum hydroxide or an equivalent dose of this compound only with the aim of identifying the activated molecular signature. Blood samples were taken from each animal at the beginning and at the end of the experiment and PBMCs isolated.

View Article and Find Full Text PDF

The use of vaccines including aluminum (Al)-based adjuvants is widespread among small ruminants and other animals. They are associated with the appearance of transient injection site nodules corresponding to granulomas. This study aims to characterize the morphology of these granulomas, to understand the role of the Al adjuvant in their genesis, and to establish the presence of the metal in regional lymph nodes.

View Article and Find Full Text PDF

Lentiviruses are infectious agents of a number of animal species, including sheep, goats, horses, monkeys, cows, and cats, in addition to humans. As in the human case, the host immune response fails to control the establishment of chronic persistent infection that finally leads to a specific disease development. Despite intensive research on the development of lentivirus vaccines, it is still not clear which immune responses can protect against infection.

View Article and Find Full Text PDF

β-glucans exhibited in cell walls of several pathogens as bacteria or fungi are sensed by pathogen recognition receptors such as scavenger receptors present in antigen presenting cells, i.e., macrophages.

View Article and Find Full Text PDF

Intrinsic factors of the innate immune system include the apolipoprotein B editing enzyme catalytic polypeptide-like 3 (APOBEC3) protein family. APOBEC3 inhibits replication of different virus families by cytosine deamination of viral DNA and a not fully characterized cytosine deamination-independent mechanism. Sheep are susceptible to small ruminant lentivirus (SRLVs) infection and contain three APOBEC3 genes encoding four proteins (A3Z1, Z2, Z3 and Z2-Z3) with yet not deeply described antiviral properties.

View Article and Find Full Text PDF

Small ruminant lentiviruses (SRLV) globally affect welfare and production of sheep and goats and are mainly controlled through elimination of infected animals, independently of the viral kinetics within the single animal. Control programs are based on highly sensitive serological tests, however the existence of low antibody responders leads to the permanent presence of seronegative infected animals in the flock, thus perpetuating the infection. On the other hand, long-term non-progressors show a detectable antibody response not indicative of a shedding animal, suggesting immune contention of infection.

View Article and Find Full Text PDF

The transmission frequency of small ruminant lentiviruses (SRLVs) through the placenta is controversial and may be associated with breed susceptibility. In Mexico, SRLV infections in sheep have been poorly studied. This work explores the presence of antibodies and proviral DNA in Mexican Pelibuey sheep.

View Article and Find Full Text PDF

Red deer populations in the Iberian glacial refugium were the main source for postglacial recolonization and subspecific radiation in north-western Europe. However, the phylogenetic history of Iberian red deer (Cervus elaphus hispanicus) and its relationships with northern European populations remain uncertain. Here, we study DNA sequences at the mitochondrial control region along with STR markers for over 680 specimens from all the main red deer populations in Spain and other west European areas.

View Article and Find Full Text PDF

Small ruminant lentivirus (SRLV) infection causes losses in the small ruminant industry due to reduced animal production and increased replacement rates. Infection of wild ruminants in close contact with infected domestic animals has been proposed to play a role in SRLV epidemiology, but studies are limited and mostly involve hybrids between wild and domestic animals. In this study, SRLV seropositive red deer, roe deer and mouflon were detected through modified ELISA tests, but virus was not successfully amplified using a set of different PCRs.

View Article and Find Full Text PDF

The major challenges in diagnosing small ruminant lentivirus (SRLV) infection include early detection and genotyping of strains of epidemiological interest. A longitudinal study was carried out in Rasa Aragonesa sheep experimentally infected with viral strains of genotypes A or B from Spanish neurological and arthritic SRLV outbreaks, respectively. Sera were tested with two commercial ELISAs, three based on specific peptides and a novel combined peptide ELISA.

View Article and Find Full Text PDF

Small ruminant lentiviruses (SRLV) infect the monocyte/macrophage lineage inducing a long-lasting infection affecting body condition, production and welfare of sheep and goats all over the world. Macrophages play a pivotal role on the host's innate and adaptative immune responses against parasites by becoming differentially activated. Macrophage heterogeneity can tentatively be classified into classically differentiated macrophages (M1) through stimulation with IFN-γ displaying an inflammatory profile, or can be alternatively differentiated by stimulation with IL-4/IL-13 into M2 macrophages with homeostatic functions.

View Article and Find Full Text PDF

Multisystemic disease caused by Small Ruminant Lentiviruses (SRLV) in sheep and goats leads to production losses, to the detriment of animal health and welfare. This, together with the lack of treatments, has triggered interest in exploring different strategies of immunization to control the widely spread SRLV infection and, also, to provide a useful model for HIV vaccines. These strategies involve inactivated whole virus, subunit vaccines, DNA encoding viral proteins in the presence or absence of plasmids encoding immunological adjuvants and naturally or artificially attenuated viruses.

View Article and Find Full Text PDF