Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants known to pose significant risks to human and wildlife health. Freshwater turtles (Emydura macquarii macquarii), as long-lived species inhabiting aquatic ecosystems, are particularly vulnerable to PFAS bioaccumulation. This study investigated the multifaceted impact of PFAS contamination on these turtles, focusing on metabolic disruptions, reproductive success, hatchling health, and population impacts.
View Article and Find Full Text PDFEnvironmental contamination of aquatic systems by per- and polyfluoroalkyl substances (PFAS) has generated significant health concerns. Remediation of contaminated sites such as the fire-fighting emergency training grounds that use aqueous film-forming foams is a high priority. Phytoremediation may help play a part in removing PFAS from such contaminated waters.
View Article and Find Full Text PDFPesticide contamination poses a significant threat to non-target wildlife, including amphibians, many of which are already highly threatened. This study assessed the extent of pesticide exposure in dead frogs collected during a mass mortality event across eastern New South Wales, Australia between July 2021 and March 2022. Liver tissue from 77 individual frogs of six species were analysed for >600 legacy and contemporary pesticides, including rodenticides.
View Article and Find Full Text PDFPer- and poly-fluoroalkyl substances (PFAS) pose a threat to organisms and ecosystems due to their persistent nature. Ecotoxicology endpoints used in regulatory guidelines may not reflect multiple, low-level but persistent stressors. This study examines the biological effects of PFAS on Eastern short-necked turtles in Queensland, Australia.
View Article and Find Full Text PDFThere is growing recognition of the threat posed to wildlife by pollutants. Waterbirds are robust bioindicators of ecosystem health, and metal toxicity is a threat to these species in waterways worldwide. Urban waterbirds are likely to be at the highest risk of heavy metal exposure, but this issue has not been widely explored in Australia.
View Article and Find Full Text PDFSpecimens of Dolichoperoides macalpini (Nicoll, 1914) (Digenea: Dolichoperoididae) were collected from Australian venomous snakes (Elapidae): Notechis scutatus Peters, 1861 and Austrelaps superbus (Günther, 1858) from Tasmania and surrounding islands and N. s. occidentalis Glauert, 1948 from wetlands near Perth, Western Australia.
View Article and Find Full Text PDFUrban ecosystems and remnant habitat 'islands' therein, provide important strongholds for many wildlife species including those of conservation significance. However, the persistence of these habitats can be undermined if their structure and function are too severely disrupted. Urban wetlands, specifically, are usually degraded by a monoculture of invasive vegetation, disrupted hydrology, and chronic-contamination from a suite of anthropogenic pollutants.
View Article and Find Full Text PDFUrbanisation alters landscapes, introduces wildlife to novel stressors, and fragments habitats into remnant 'islands'. Within these islands, isolated wildlife populations can experience genetic drift and subsequently suffer from inbreeding depression and reduced adaptive potential. The Western tiger snake (Notechis scutatus occidentalis) is a predator of wetlands in the Swan Coastal Plain, a unique bioregion that has suffered substantial degradation through the development of the city of Perth, Western Australia.
View Article and Find Full Text PDFUrban wildlife often suffer poorer health than their counterparts living in more pristine environments due to exposure to anthropogenic stressors such as habitat degradation and environmental contamination. As a result, the health of urban versus nonurban snakes might be assessed by differences in their plasma biochemistries. We compared the plasma profiles of western tiger snakes (Notechis scutatus occidentalis) from a heavily urbanized wetland and a natural, nonurbanized wetland.
View Article and Find Full Text PDFMany invasive species exploit anthropogenically disturbed habitats, but most of those taxa evolved long before humans. Presumably, then, an ability to use natural (non-anthropogenic) disturbances pre-adapted invaders to a world later degraded by people. Studies on invasive species in naturally disturbed habitats thus can clarify the ancestral niche of invaders.
View Article and Find Full Text PDFInt J Parasitol Parasites Wildl
December 2013
One of the most devastating impacts of an invasive species is the introduction of novel parasites or diseases to native fauna. Invasive cane toads (Rhinella marina) in Australia contain several types of parasites, raising concern that the toads may increase rates of parasitism in local anuran species. We sampled cane toads and sympatric native frogs (Limnodynastes peronii, Litoria latopalmata, and Litoria nasuta) at the southern invasion front of cane toads in north-eastern New South Wales (NSW).
View Article and Find Full Text PDF