Publications by authors named "Damian B van Rossum"

Article Synopsis
  • Ykt6 is a SNARE protein that plays a crucial role in vesicular fusion, transitioning between active and inactive forms in different cellular compartments.
  • Research showed that Ykt6 is phosphorylated at a specific site influenced by calcium signaling, which triggers a change in its shape from a closed to an open form.
  • This open form alters Ykt6's interactions with other proteins, which can disrupt secretory and autophagy pathways, potentially increasing toxicity in models of Parkinson's disease.
View Article and Find Full Text PDF

Organismal phenotypes frequently involve multiple organ systems. Histology is a powerful way to detect cellular and tissue phenotypes, but is largely descriptive and subjective. To determine how synchrotron-based X-ray micro-tomography (micro-CT) can yield 3-dimensional whole-organism images suitable for quantitative histological phenotyping, we scanned whole zebrafish, a small vertebrate model with diverse tissues, at ~1 micron voxel resolutions.

View Article and Find Full Text PDF

For over a hundred years, the histological study of tissues has been the gold standard for medical diagnosis because histology allows all cell types in every tissue to be identified and characterized. Our laboratory is actively working to make technological advances in X-ray micro-computed tomography (micro-CT) that will bring the diagnostic power of histology to the study of full tissue volumes at cellular resolution (i.e.

View Article and Find Full Text PDF

The Shaker-like family of voltage-gated K channels comprises four functionally independent gene subfamilies, Shaker (Kv1), Shab (Kv2), Shaw (Kv3), and Shal (Kv4), each of which regulates distinct aspects of neuronal excitability. Subfamily-specific assembly of tetrameric channels is mediated by the N-terminal T1 domain and segregates Kv1-4, allowing multiple channel types to function independently in the same cell. Typical Shaker-like Kv subunits can form functional channels as homotetramers, but a group of mammalian Kv2-related genes (Kv5.

View Article and Find Full Text PDF

Calcineurin is an essential Ca-dependent phosphatase. Increased calcineurin activity is associated with α-synuclein (α-syn) toxicity, a protein implicated in Parkinson's Disease (PD) and other neurodegenerative diseases. Calcineurin can be inhibited with Tacrolimus through the recruitment and inhibition of the 12-kDa proline isomerase FK506-binding protein (FKBP12).

View Article and Find Full Text PDF

In recognition of the importance of zebrafish as a model organism for studying human disease, we have created zebrafish content for a web-based reference atlas of microanatomy for comparing histology and histopathology between model systems and with humans (http://bio-atlas.psu.edu).

View Article and Find Full Text PDF

Biomedical research and clinical diagnosis would benefit greatly from full volume determinations of anatomical phenotype. Comprehensive tools for morphological phenotyping are central for the emerging field of phenomics, which requires high-throughput, systematic, accurate, and reproducible data collection from organisms affected by genetic, disease, or environmental variables. Theoretically, complete anatomical phenotyping requires the assessment of every cell type in the whole organism, but this ideal is presently untenable due to the lack of an unbiased 3D imaging method that allows histopathological assessment of any cell type despite optical opacity.

View Article and Find Full Text PDF

In vertebrate neurons, the axon initial segment (AIS) is specialized for action potential initiation. It is organized by a giant 480 Kd variant of ankyrin G (AnkG) that serves as an anchor for ion channels and is required for a plasma membrane diffusion barrier that excludes somatodendritic proteins from the axon. An unusually long exon required to encode this 480Kd variant is thought to have been inserted only recently during vertebrate evolution, so the giant ankyrin-based AIS scaffold has been viewed as a vertebrate adaptation for fast, precise signaling.

View Article and Find Full Text PDF

Previous research has indicated that long-chain fatty acids can bind myoglobin (Mb) in an oxygen-dependent manner. This suggests that oxy-Mb may play an important role in fuel delivery in Mb-rich muscle fibers (e.g.

View Article and Find Full Text PDF

Unlabelled: Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in young children worldwide. The RSV nonstructural protein 2 (NS2) is a multifunctional protein that primarily acts to antagonize the innate immune system by targeting STAT2 for proteasomal degradation. We investigated the structural determinants of NS2 important for interaction with the host ubiquitin system to degrade STAT2 during infection.

View Article and Find Full Text PDF

HCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2). Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node.

View Article and Find Full Text PDF

Phosphatidylinositol 4,5-bisphosphate (PIP2) regulates Shaker K+ channels and voltage-gated Ca2+ channels in a bimodal fashion by inhibiting voltage activation while stabilizing open channels. Bimodal regulation is conserved in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, but voltage activation is enhanced while the open channel state is destabilized. The proposed sites of PIP2 regulation in these channels include the voltage-sensor domain (VSD) and conserved regions of the proximal cytoplasmic C terminus.

View Article and Find Full Text PDF

The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolites; however, the binding pocket and regulation of the interaction remains to be established.

View Article and Find Full Text PDF

We examined the origins and functional evolution of the Shaker and KCNQ families of voltage-gated K(+) channels to better understand how neuronal excitability evolved. In bilaterians, the Shaker family consists of four functionally distinct gene families (Shaker, Shab, Shal, and Shaw) that share a subunit structure consisting of a voltage-gated K(+) channel motif coupled to a cytoplasmic domain that mediates subfamily-exclusive assembly (T1). We traced the origin of this unique Shaker subunit structure to a common ancestor of ctenophores and parahoxozoans (cnidarians, bilaterians, and placozoans).

View Article and Find Full Text PDF

The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death.

View Article and Find Full Text PDF

Animals need to sense and react to potentially dangerous environments. TRP ion channels participate in nociception, presumably via Ca(2+) influx, in most animal species. However, the relationship between ion permeation and animals' nocifensive behaviour is unknown.

View Article and Find Full Text PDF

Mammalian Ether-a-go-go related gene (Erg) family voltage-gated K(+) channels possess an unusual gating phenotype that specializes them for a role in delayed repolarization. Mammalian Erg currents rectify during depolarization due to rapid, voltage-dependent inactivation, but rebound during repolarization due to a combination of rapid recovery from inactivation and slow deactivation. This is exemplified by the mammalian Erg1 channel, which is responsible for IKr, a current that repolarizes cardiac action potential plateaus.

View Article and Find Full Text PDF

Background: The recA/RAD51 gene family encodes a diverse set of recombinase proteins that affect homologous recombination, DNA-repair, and genome stability. The recA gene family is expressed across all three domains of life - Eubacteria, Archaea, and Eukaryotes - and even in some viruses. To date, efforts to resolve the deep evolutionary origins of this ancient protein family have been hindered by the high sequence divergence between paralogous groups (i.

View Article and Find Full Text PDF

Both multiple sequence alignment and phylogenetic analysis are problematic in the "twilight zone" of sequence similarity (≤ 25% amino acid identity). Herein we explore the accuracy of phylogenetic inference at extreme sequence divergence using a variety of simulated data sets. We evaluate four leading multiple sequence alignment (MSA) methods (MAFFT, T-COFFEE, CLUSTAL, and MUSCLE) and six commonly used programs of tree estimation (Distance-based: Neighbor-Joining; Character-based: PhyML, RAxML, GARLI, Maximum Parsimony, and Bayesian) against a novel MSA-independent method (PHYRN) described here.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) nonstructural protein 4B (NS4B) is an integral membrane protein, which plays an important role in the organization and function of the HCV replication complex (RC). Although much is understood about its amphipathic N-terminal and C-terminal domains, we know very little about the role of the transmembrane domains (TMDs) in NS4B function. We hypothesized that in addition to anchoring NS4B into host membranes, the TMDs are engaged in intra- and intermolecular interactions required for NS4B structure/function.

View Article and Find Full Text PDF

A major computational challenge in the genomic era is annotating structure/function to the vast quantities of sequence information that is now available. This problem is illustrated by the fact that most proteins lack comprehensive annotations, even when experimental evidence exists. We previously theorized that embedded-alignment profiles (simply "alignment profiles" hereafter) provide a quantitative method that is capable of relating the structural and functional properties of proteins, as well as their evolutionary relationships.

View Article and Find Full Text PDF

Pheromone recognition relies on an amplification cascade that is triggered by pheromone binding to G protein-coupled receptors (GPCR). The first step in translation of GPCR activation by pheromones in the vomeronasal organ and main olfactory epithelium (MOE) into a cellular response is the activation of a transient receptor potential (TRP) family member, TRPC2 [Zufall, F., Ukhanov, K.

View Article and Find Full Text PDF

Intestinal Cl- secretion is stimulated by cyclic AMP (cAMP) and intracellular calcium ([Ca2+]i). Recent studies show that protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac) are downstream targets of cAMP. Therefore, we tested whether both PKA and Epac are involved in forskolin (FSK)/cAMP-stimulated Cl- secretion.

View Article and Find Full Text PDF

One of the major challenges in the genomic era is annotating structure/function to the vast quantities of sequence information now available. Indeed, most of the protein sequence database lacks comprehensive annotation, even when experimental evidence exists. Further, within structurally resolved and functionally annotated protein domains, additional functionalities contained in these domains are not apparent.

View Article and Find Full Text PDF