In plants, the establishment of broad and long-lasting immunity is based on programs that control systemic resistance and immunological memory or "priming". Despite not showing activated defenses, a primed plant induces a more efficient response to recurrent infections. Priming might involve chromatin modifications that allow a faster/stronger activation of defense genes.
View Article and Find Full Text PDFBackground: Hindpaw injection of formalin in rodents is used to assess acute persistent pain. The response to formalin is biphasic. The initial response (first minutes) is thought to be linked to inflammatory, peripheral mechanisms, while the latter (around 30 min after the injection), is linked to central mechanisms.
View Article and Find Full Text PDFThe gene pool encoding PRR and NLR immune receptors determines the ability of a plant to resist microbial infections. Basal expression of these genes is prevented by diverse mechanisms since their hyperactivity can be harmful. To approach the study of epigenetic control of / genes we here analyzed their expression in mutants carrying abnormal repressive 5-methyl cytosine (5-mC) and histone 3 lysine 9 dimethylation (H3K9me2) marks, due to lack of MET1, CMT3, MOM1, SUVH4/5/6, or DDM1.
View Article and Find Full Text PDFNatural and synthetic elicitors have contributed significantly to the study of plant immunity. Pathogen-derived proteins and carbohydrates that bind to immune receptors, allow the fine dissection of certain defence pathways. Lipids of a different nature that act as defence elicitors, have also been studied, but their specific effects have been less well characterized, and their receptors have not been identified.
View Article and Find Full Text PDF