Zoonotic malaria presents a major public health challenge in Southeast Asia. Plasmodium cynomolgi coinfects the same macaque hosts and mosquito vectors as the most common cause of zoonotic malaria, Plasmodium knowlesi. Plasmodium cynomolgi appears morphologically similar to Plasmodium vivax on microscopy and can amplify P.
View Article and Find Full Text PDFUnderstanding immune mechanisms that mediate malaria protection is critical for improving vaccine development. Vaccination with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) induces high level of sterilizing immunity against malaria and serves as a valuable tool for the study of protective mechanisms. To identify vaccine-induced and protection-associated responses during malarial infection, we performed transcriptome profiling of whole blood and in-depth cellular profiling of PBMCs from volunteers who received either PfRAS or noninfectious mosquito bites, followed by controlled human malaria infection (CHMI) challenge.
View Article and Find Full Text PDFBackground: Protective malarial antibodies are acquired more rapidly in adults than children, independently of cumulative exposure, however the cellular responses mediating these differences are unknown. CD4 T-follicular helper (Tfh) cells have key roles in inducing antibodies, with Th2-Tfh cell activation associated with antibody development in malaria. Whether Tfh cell activation in malaria is age dependent is unknown and no studies have compared Tfh cell activation in children and adults with malaria.
View Article and Find Full Text PDFMorbidity and mortality rates from seasonal and pandemic influenza occur disproportionately in high-risk groups, including Indigenous people globally. Although vaccination against influenza is recommended for those most at risk, studies on immune responses elicited by seasonal vaccines in Indigenous populations are largely missing, with no data available for Indigenous Australians and only one report published on antibody responses in Indigenous Canadians. We recruited 78 Indigenous and 84 non-Indigenous Australians vaccinated with the quadrivalent influenza vaccine into the Looking into InFluenza T cell immunity - Vaccination cohort study and collected blood to define baseline, early (day 7), and memory (day 28) immune responses.
View Article and Find Full Text PDFBackground: Anaemia is a major consequence of malaria, caused by the removal of both infected and uninfected red blood cells (RBCs) from the circulation. Complement activation and reduced expression of complement regulatory proteins (CRPs) on RBCs are an important pathogenic mechanism in severe malarial anaemia in both Plasmodium falciparum and Plasmodium vivax infection. However, little is known about loss of CRPs on RBCs during mild malarial anaemia and in low-density infection.
View Article and Find Full Text PDFBackground: Complement-fixing antibodies are important mediators of protection against Plasmodium falciparum malaria. However, complement-fixing antibodies remain uncharacterized for Plasmodium vivax malaria. P.
View Article and Find Full Text PDFAnemia is a major complication of malaria, driven largely by loss of uninfected RBCs during infection. RBC clearance through loss of complement regulatory proteins (CRPs) is a significant contributor to anemia in Plasmodium falciparum infection, but its role in Plasmodium vivax infection is unknown. CRP loss increases RBC susceptibility to macrophage clearance, a process that is also regulated by CD47.
View Article and Find Full Text PDF