Publications by authors named "Damhofer H"

Poor survival and lack of treatment response in glioblastoma (GBM) is attributed to the persistence of glioma stem cells (GSCs). To identify novel therapeutic approaches, we performed CRISPR/Cas9 knockout screens and discovered TGFβ activated kinase (TAK1) as a selective survival factor in a significant fraction of GSCs. Loss of TAK1 kinase activity results in RIPK1-dependent apoptosis via Caspase-8/FADD complex activation, dependent on autocrine TNFα ligand production and constitutive TNFR signaling.

View Article and Find Full Text PDF

Background: Recently it has been recognized that stromal markers could be used as a clinically relevant biomarker for therapy response and prognosis. Here, we report on a serum marker for stromal activation, A Disintegrin and Metalloprotease 12 (ADAM12) in colorectal cancer (CRC).

Methods: Using gene expression databases we investigated ADAM12 expression in CRC and delineated the source of ADAM12 expression.

View Article and Find Full Text PDF

Protein degradation technologies represent a powerful functional genomics tool, allowing fast and controllable target protein depletion. Establishing these systems requires a knock-in of the degradation tag into both endogenous target gene alleles. Here, we provide a step-by-step protocol for the efficient generation of biallelic degradation tag knock-ins in mouse and human cell lines using CRISPR-Cas9.

View Article and Find Full Text PDF
Article Synopsis
  • - Acetylation of lysine 16 on histone H4 (H4K16ac) is influenced by the histone acetyltransferase KAT8, which plays different roles depending on the protein complex it's part of (NSL or MSL).
  • - KAT8, when associated with the NSL complex, adds acetyl groups to H4K5 and H4K8, which are important for activating genes necessary for cell survival.
  • - Interestingly, while H4K16ac and MSL complex proteins don't affect cell growth or chromatin structure, the NSL complex is crucial for stimulating transcription of housekeeping genes.
View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis of all common cancers. However, divergent outcomes exist between patients, suggesting distinct underlying tumor biology. Here, we delineated this heterogeneity, compared interconnectivity between classification systems, and experimentally addressed the tumor biology that drives poor outcome.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma that harbors tumor-promoting properties. No good biomarkers exist to monitor the effect of stromal targeting therapies or to predict response. We set out to identify such non-invasive markers for PDAC stroma and predict response to therapy.

View Article and Find Full Text PDF

Purpose: Basal cell carcinoma (BCC) is one of the most common skin cancers, and is typically driven by an aberrantly activated Hedgehog (Hh) pathway. The Hh pathway is regulated by interactions between the Patched-1 (Ptch1) and Smoothened (Smo) receptors. Smo is an activating receptor and is subject to inhibition by Ptch1.

View Article and Find Full Text PDF

Polycomb repressive complex 2 (PRC2) catalyzes methylation on lysine 27 of histone H3 (H3K27) and is required for maintaining transcriptional patterns and cellular identity, but the specification and maintenance of genomic PRC2 binding and H3K27 methylation patterns remain incompletely understood. Epigenetic mechanisms have been proposed, wherein pre-existing H3K27 methylation directs recruitment and regulates the catalytic activity of PRC2 to support its own maintenance. Here we investigate whether such mechanisms are required for specifying H3K27 methylation patterns in mouse embryonic stem cells (mESCs).

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is marked by an abundant stromal deposition. This stroma is suspected to harbor both tumor-promoting and tumor-suppressing properties. This is underscored by the disappointing results of stroma targeting in clinical studies.

View Article and Find Full Text PDF

Pancreatic cancer is one of the most lethal solid malignancies with little treatment options. We have recently shown that expression of protease activated receptor (PAR)-1 in the tumor microenvironment drives progression and induces chemoresistance of pancreatic cancer. As thrombin is the prototypical PAR-1 agonist, here we addressed the effect of the direct thrombin inhibitor dabigatran on pancreatic cancer growth and drug resistance in an orthotropic pancreatic cancer model.

View Article and Find Full Text PDF

Receptor tyrosine kinases of the HER-family are involved in the development and progression of multiple epithelial tumors, and have consequently become widely used targets for new anti-cancer therapies. Trastuzumab, an antibody against HER2, has shown potent growth inhibitory effects on HER2 overexpressing tumors, including gastro-esophageal cancer, however, resistance to this therapy is inevitable. Unfortunately, a paucity of data on the cellular mechanisms of resistance to targeted therapeutic agents exists in esophageal adenocarcinoma.

View Article and Find Full Text PDF

Background: The upper gastrointestinal tract is home to some of most notorious cancers like esophagogastric and pancreatic cancer. Several factors contribute to the lethality of these tumors, but one that stands out for both tumor types is the strong inter- as well as intratumor heterogeneity. Unfortunately, genetic tumor models do not match this heterogeneity, and for esophageal cancer no adequate genetic models exist.

View Article and Find Full Text PDF

Members of the Hedgehog (Hh) family of morphogens play crucial roles in development but are also involved in the progression of certain types of cancer. Despite being synthesized as hydrophobic dually lipid-modified molecules, and thus being strongly membrane-associated, Hh ligands are able to spread through tissues and act on target cells several cell diameters away. Various mechanisms that mediate Hh release have been discussed in recent years; however, little is known about dispersion of this ligand from cancer cells.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. It is typically detected at an advanced stage, at which the therapeutic options are very limited. One remarkable feature of PDAC that contributes to its resilience to treatment is the extreme stromal activation seen in these tumors.

View Article and Find Full Text PDF

Regulation of the Hedgehog (Hh) pathway relies on an interaction of two receptors. In the absence of Hh, Patched1 (Ptch1) inhibits the pathway. Binding of the ligand Hh to Ptch1 stimulates the localization of the activating receptor Smoothened (Smo) to the primary cilium, which is required for the transcriptional Hh response.

View Article and Find Full Text PDF

Inhibition of Hedgehog (HH)/GLI signalling in cancer is a promising therapeutic approach. Interactions between HH/GLI and other oncogenic pathways affect the strength and tumourigenicity of HH/GLI. Cooperation of HH/GLI with epidermal growth factor receptor (EGFR) signalling promotes transformation and cancer cell proliferation in vitro.

View Article and Find Full Text PDF