Publications by authors named "Dameng Yang"

Patients with gastric cancer and early gastric outlet obstruction often experience malnutrition and require various nutritional support strategies. This study aimed to evaluate the impact of different preoperative nutritional treatments on their postoperative recovery and prognosis. The present retrospective study collected data from 467 patients with gastric cancer and early gastric outlet obstruction who underwent surgery at Harbin Medical University Cancer Hospital (Harbin, China) between January 2016 and December 2018.

View Article and Find Full Text PDF

Background: Fermitin family member 1 (FERMT1) is highly expressed in many tumors and acts as an oncogene. Nonetheless, the precise function of FERMT1 in non-small cell lung cancer (NSCLC) has not been clearly elucidated.

Methods: Bioinformatics software predicted the FERMT1 expression in NSCLC.

View Article and Find Full Text PDF

Chiral amines are pivotal building blocks for the pharmaceutical industry. Asymmetric reductive amination is one of the most efficient and atom economic methodologies for the synthesis of optically active amines. Among the various strategies available, NAD(P)H-dependent amine dehydrogenases (AmDHs) and imine reductases (IREDs) are robust enzymes that are available from various sources and capable of utilizing a broad range of substrates with high activities and stereoselectivities.

View Article and Find Full Text PDF

Deacetoxycephalosporin C synthase (DAOCS) catalyzes the transformation of penicillin G to phenylacetyl-7-aminodeacetoxycephalosporanic acid (G-7-ADCA) for which it depends on 2-oxoglutarate (2OG) as co-substrate. However, the low activity of DAOCS and the expense of 2OG restricts its practical applications in the production of G-7-ADCA. Herein, a rational design campaign was performed on a DAOCS from Streptomyces clavuligerus (scDAOCS) in the quest to construct novel expandases.

View Article and Find Full Text PDF

We have engineered brewer's yeast as a general platform for de novo synthesis of diverse β-lactam nuclei starting from simple sugars, thereby enabling ready access to a number of structurally different antibiotics of significant pharmaceutical importance. The biosynthesis of β-lactam nuclei has received much attention in recent years, while rational engineering of non-native antibiotics-producing microbes to produce β-lactam nuclei remains challenging. Benefited by the integration of heterologous biosynthetic pathways and rationally designed enzymes that catalyze hydrolysis and ring expansion reactions, we succeeded in constructing synthetic yeast cell factories which produce antibiotic cephalosporin C (CPC, 170.

View Article and Find Full Text PDF