Publications by authors named "Dameng Lian"

In this study, a fixed-bed biofilm membrane bioreactor was used to assess denitrification and carbon removal performance, membrane fouling, composition, and the dynamics of microbial communities across 10 salinity levels. As salinity levels increased (from 0 to 30 g/L), the removal efficiency of total nitrogen and chemical oxygen demand decreased from 98 and 86% in Phase I to 25 and 45% in Phase X, respectively. Beyond a salinity level of 10 g/L, membrane fouling accelerated considerably.

View Article and Find Full Text PDF

Reperfusion injury following cold and warm ischemia (IRI) is unavoidable during kidney transplantation and contributes to delayed graft function (DGF) and premature graft loss. Death of tubular epithelial cells (TECs) by necrosis during IRI releases pro-inflammatory mediators (e.g.

View Article and Find Full Text PDF

Transplantation is invariably associated with programmed cell death including apoptosis and necrosis, resulting in delayed graft function and organ rejection. We have demonstrated the contribution of necroptosis to mouse microvascular endothelial cell (MVEC) death and transplant rejection. Organ injury results in the opening of mitochondrial permeability transition pores (mPTPs), which can trigger apoptotic molecules release that ultimately results in cell death.

View Article and Find Full Text PDF

Background: Despite advances in immunosuppressive therapies, the rate of chronic transplant loss remains substantial. Organ injury involves various forms of cell death including apoptosis and necrosis. We now recognize that early injury of cardiac transplants involves a newly described form of programmed necrotic cell death, termed necroptosis.

View Article and Find Full Text PDF

Ischemia-reperfusion injury during kidney transplantation predisposes to delayed graft function, rejection, and premature graft failure. Exacerbation of tissue damage and alloimmune responses may be explained by necroinflammation: an autoamplification loop of cell death and inflammation, which is mediated by the release of damage-associated molecular patterns (eg, high-mobility group box-1; HMGB1) from necrotic cells that activate both innate and adaptive immune pathways. Kidney injury molecule-1 (KIM-1) is a phosphatidylserine receptor that is upregulated on injured proximal tubular epithelial cells and enables them to clear apoptotic and necrotic cells.

View Article and Find Full Text PDF

Objectives: To assess the effects of slow-releasing HS donor GYY4137 on post-obstructive renal function and injury following unilateral ureteral obstruction (UUO) by using the UUO and reimplantation (UUO-R) model in rats and to elucidate potential mechanisms by using an in vitro model of epithelial-mesenchymal transition (EMT).

Methods: Male Lewis rats underwent UUO at the left ureterovesical junction. From post-operative day (POD) 1-13, rats received daily intraperitoneal (IP) injection of phosphate buffered saline (PBS, 1 mL) or GYY4137 (200 μmol/kg/day in 1 mL PBS, IP).

View Article and Find Full Text PDF

Purpose: Chronic obstructive uropathy can cause irreversible kidney injury, atrophy and inflammation, which can ultimately lead to fibrosis. Epithelial-mesenchymal transition is a key trigger of fibrosis that is caused by up-regulation of TGF-β1 (transforming growth factor-β1) and ANGII (angiotensin II). HS is an endogenously produced gasotransmitter with cytoprotective properties.

View Article and Find Full Text PDF

Background: Approximately 50% of cardiac transplants fail in the long term, and currently, there are no specific treatments to prevent chronic rejection. In the clinic, donor cardiac graft ischemia time is limited to within a few hours and correlates with delayed graft function and organ failure. It is still unknown how ischemic injury negatively influences allograft function over the long term despite advances in immunosuppression therapy.

View Article and Find Full Text PDF

Cytokines and chemokines produced by tubular epithelial and infiltrating cells are critical to inflammation in renal ischemia-reperfusion injury. IL-37, a newly described IL-1 family member, inhibits IL-18-dependent pro-inflammatory cytokine production by its binding to IL-18 receptors and IL-18 binding protein. The potential role of IL-37 in renal ischemia-reperfusion injury is unknown.

View Article and Find Full Text PDF

Background: While substantial progress has been made in blocking acute transplant rejection with the advent of immune suppressive drugs, chronic rejection, mediated primarily by recipient antigen presentation, remains a formidable problem in clinical transplantation. We hypothesized that blocking co-stimulatory pathways in the recipient by induction of RNA interference using small interference RNA (siRNA) expression vectors can prolong allogeneic heart graft survival.

Method: Vectors expressing siRNA specifically targeting CD40 and CD80 were prepared.

View Article and Find Full Text PDF

Carbon monoxide (CO) can provide beneficial antiapoptotic and anti-inflammatory effects in the context of ischemia-reperfusion injury (IRI). Here we tested the ability of pretreating the kidney donor with carbon monoxide-releasing molecules (CORM) to prevent IRI in a transplant model. Isogeneic Brown Norway donor rats were pretreated with CORM-2 18 h before kidney retrieval.

View Article and Find Full Text PDF

Background: Recombinant human soluble CD83 had previously exhibited significant immunosuppressive properties that involved interference with dendritic cell maturation in both mouse and humans, inhibition of autoimmunity in mice, and induction of antigen-specific mouse cardiac allograft tolerance when used in combination with other immunosuppressive drugs. Our current research focus turned to examining the effects of peritransplant soluble CD83 (sCD83) administration on prevention of chronic renal allograft rejection.

Methods: Fisher344-to-Lewis orthotopic rat renal transplants were performed with sequential recipient killing on postoperative days (PODs) 2, 14, and 140 to examine both the acute and chronic effects of peritransplant sCD83 treatment in rat recipients.

View Article and Find Full Text PDF

Regulatory T (Treg) cells play an important role in the regulation of immune responses but whether Treg will induce tolerance in transplant recipients in the clinic remains unknown. Our previous studies have shown that TCRαβ(+)CD3(+)CD4⁻CD8⁻NK1.1⁻ (double negative, DN) T cells suppress T cell responses and prolong allograft survival in a single locus MHC-mismatched mouse model.

View Article and Find Full Text PDF

Background: Dendritic cells (DCs) are crucial regulators of immunity and important in inducing and maintaining tolerance. Here, we investigated the potential of a novel DC-immunomodulating agent, soluble CD83 (sCD83), in inducing transplant tolerance.

Methods: We used the C3H-to-C57BL/6 mouse cardiac transplantation model that exhibits a combination of severe cell-mediated rejection and moderate antibody-mediated rejection and investigated whether sCD83 could augment a combination therapy consisting of Rapamycin (Rapa) and anti-CD45RB monoclonal antibody (α-CD45) to prolong allograft survival.

View Article and Find Full Text PDF

Background: Ischemia/reperfusion injury is a major factor in graft quality and subsequent function in the transplantation setting. We hypothesize that the process of RNA interference may be used to "engineer" a graft to suppress expression of genes associated with inflammation, apoptosis, and complement, which are believed to cause ischemia/reperfusion injury. Such manipulation of pathological gene expression may be performed by treatment of the graft ex vivo with small interfering RNA (siRNA) as part of the preservation procedure.

View Article and Find Full Text PDF

Tolerogenic dendritic cells (Tol-DCs) and regulatory T cells (Treg) are key factors in the induction and maintenance of transplantation tolerance. We previously demonstrated that ex vivo-isolated Tol-DCs promote Treg generation, and vice versa, in an in vitro co-culture system. Here we demonstrate the occurrence of such an immune regulatory feedback loop in vivo.

View Article and Find Full Text PDF

Dendritic cells are among the most potent antigen-presenting cells and are important in the development of both immunity and tolerance. Tolerogenic dendritic cell (Tol-DC) is a key factor in the induction and maintenance of tolerance during transplantation. However, the precise mechanism and direct evidence of in vivo immune modulation remain unclear.

View Article and Find Full Text PDF

Dendritic cells (DC), the most potent APCs, can initiate the immune response or help induce immune tolerance, depending upon their level of maturation. DC maturation is associated with activation of the NF-kappaB pathway, and the primary NF-kappaB protein involved in DC maturation is RelB, which coordinates RelA/p50-mediated DC differentiation. In this study, we show that silencing RelB using small interfering RNA results in arrest of DC maturation with reduced expression of the MHC class II, CD80, and CD86.

View Article and Find Full Text PDF

Background: It has been demonstrated that in vitro the presence of extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling inhibitor suppresses T cell activation and Th1 development. However, pharmacological interference of ERK1/2 signaling by administration of its small molecule inhibitor has not been tested as a therapeutic target in the prevention of allograft rejection.

Methods: The immunosuppressive effect of targeting ERK1/2 signaling was tested on cardiac allograft survival in C57BL/6 (H-2b) to Balb/c (H-2d) murine model using PD98059 inhibitor.

View Article and Find Full Text PDF

Background: Chronic allograft nephropathy is a sclerotic process characterized by an increased extracellular matrix (ECM) protein deposition. Fibronectin (FN) is a major component of ECM. FN has been reported to undergo alternative splicing and produce several isoforms including the extra domain-B (ED-B) containing embryonic isoform.

View Article and Find Full Text PDF

We determined the role of cytokines in regulating the pattern of rejection and recipient susceptibility to cyclosporine (CsA) in a mouse cardiac allograft model. Hearts from C3H mice transplanted into untreated BALB/c (Th2-dominant) and C57BL/6 (Th1-dominant) mice showed different patterns of rejection. C3H allografts in BALB/c mice showed typical acute vascular rejection (AVR) with strong intragraft deposition and high serum levels of anti-donor IgG with predominant IgG1, while C3H allografts in C57BL/6 mice showed typical acute cellular rejection (ACR) with massive intragraft infiltration of CD4(+) and CD8(+) lymphocytes and low serum levels of anti-donor IgG with predominant IgG2a.

View Article and Find Full Text PDF