Homogeneous mixed-valence (MV) behaviour is one of the most intriguing phenomena of f-electron systems. Despite extensive efforts, a fundamental aspect which remains unsettled is the experimental determination of the limiting cases for which MV emerges. Here we address this question for SmB, a prototypical MV system characterized by two nearly-degenerate Sm and Sm configurations.
View Article and Find Full Text PDFUnderstanding the interplay between charge, nematic, and structural ordering tendencies in cuprate superconductors is critical to unraveling their complex phase diagram. Using pump-probe time-resolved resonant X-ray scattering on the (0 0 1) Bragg peak at the Cu [Formula: see text] and O [Formula: see text] resonances, we investigate nonequilibrium dynamics of [Formula: see text] nematic order and its association with both charge density wave (CDW) order and lattice dynamics in La[Formula: see text]Eu[Formula: see text]Sr[Formula: see text]CuO[Formula: see text]. The orbital selectivity of the resonant X-ray scattering cross-section allows nematicity dynamics associated with the planar O 2[Formula: see text] and Cu 3[Formula: see text] states to be distinguished from the response of anisotropic lattice distortions.
View Article and Find Full Text PDFWe present the development of a versatile apparatus for 6.2 eV laser-based time and angle-resolved photoemission spectroscopy with micrometer spatial resolution (time-resolved μ-ARPES). With a combination of tunable spatial resolution down to ∼11 μm, high energy resolution (∼11 meV), near-transform-limited temporal resolution (∼280 fs), and tunable 1.
View Article and Find Full Text PDFAtomically thin cuprates exhibiting a superconducting phase transition temperature similar to that of the bulk have recently been realized, although the device fabrication remains a challenge and limits the potential for many novel studies and applications. Here, we use an optical pump-probe approach to noninvasively study the unconventional superconductivity in atomically thin BiSrCaYCuO (Y-Bi2212). Apart from finding an optical response due to the superconducting phase transition that is similar to that of bulk Y-Bi2212, we observe that the sign and amplitude of the pump-probe signal in atomically thin flakes vary significantly in different dielectric environments depending on the nature of the optical excitation.
View Article and Find Full Text PDFPurpose: The early regression index (ERI) predicts treatment response in rectal cancer patients. Aim of current study was to prospectively assess tumor response to neoadjuvant chemo-radiotherapy (nCRT) of locally advanced esophageal cancer using ERI, based on MRI.
Material And Methods: From January 2020 to May 2023, 30 patients with esophageal cancer were enrolled in a prospective study (ESCAPE).
Proc Natl Acad Sci U S A
May 2023
Iron-chalcogenide superconductors FeSeS possess unique electronic properties such as nonmagnetic nematic order and its quantum critical point. The nature of superconductivity with such nematicity is important for understanding the mechanism of unconventional superconductivity. A recent theory suggested the possible emergence of a fundamentally new class of superconductivity with the so-called Bogoliubov Fermi surfaces (BFSs) in this system.
View Article and Find Full Text PDFCuprate high-T superconductors are known for their intertwined interactions and the coexistence of competing orders. Uncovering experimental signatures of these interactions is often the first step in understanding their complex relations. A typical spectroscopic signature of the interaction between a discrete mode and a continuum of excitations is the Fano resonance/interference, characterized by the asymmetric light-scattering amplitude of the discrete mode as a function of the electromagnetic driving frequency.
View Article and Find Full Text PDFNPJ Quantum Mater
October 2023
FeSeS remains one of the most enigmatic systems of Fe-based superconductors. While much is known about the orthorhombic parent compound, FeSe, the tetragonal samples, FeSeS with > 0.17, remain relatively unexplored.
View Article and Find Full Text PDFThe interplay between structural and electronic degrees of freedom in complex materials is the subject of extensive debate in physics and materials science. Particularly interesting questions pertain to the nature and extent of pre-transitional short-range order in diverse systems ranging from shape-memory alloys to unconventional superconductors, and how this microstructure affects macroscopic properties. Here we use neutron and X-ray diffuse scattering to uncover universal structural fluctuations in LaSrCuO and TlBaCuO, two cuprate superconductors with distinct point disorder effects and with optimal superconducting transition temperatures that differ by more than a factor of two.
View Article and Find Full Text PDFQuantum materials are notoriously sensitive to their environments, where small perturbations can tip a system toward one of several competing ground states. Graphene hosts a rich assortment of such competing phases, including a bond density wave instability ("Kekulé distortion") that couples electrons at the K/K' valleys and breaks the lattice symmetry. Here, we report observations of a ubiquitous Kekulé distortion across multiple graphene systems.
View Article and Find Full Text PDFIn spintronics, the two main approaches to actively control the electrons' spin involve static magnetic or electric fields. An alternative avenue relies on the use of optical fields to generate spin currents, which can bolster spin-device performance, allowing for faster and more efficient logic. To date, research has mainly focused on the optical injection of spin currents through the photogalvanic effect, and little is known about the direct optical control of the intrinsic spin-splitting.
View Article and Find Full Text PDFSuperconductivity and charge density waves (CDWs) are competitive, yet coexisting, orders in cuprate superconductors. To understand their microscopic interdependence, a probe capable of discerning their interaction on its natural length and time scale is necessary. We use ultrafast resonant soft x-ray scattering to track the transient evolution of CDW correlations in YBaCuO after the quench of superconductivity by an infrared laser pulse.
View Article and Find Full Text PDFThe mechanism of the enhanced superconductivity in monolayer FeSe/SrTiO has been enthusiastically studied and debated over the past decade. One specific observation has been taken to be of central importance: the replica bands in the photoemission spectrum. Although suggestive of electron-phonon interaction in the material, the essence of these spectroscopic features remains highly controversial.
View Article and Find Full Text PDFRadiomics allows the extraction quantitative features from imaging, as imaging biomarkers of disease. The objective of this exploratory study is to implement a reproducible radiomic-pipeline for the extraction of a magnetic resonance imaging (MRI) signature for prostate cancer (PCa) aggressiveness. One hundred and two consecutive patients performing preoperative prostate multiparametric magnetic resonance imaging (mpMRI) and radical prostatectomy were enrolled.
View Article and Find Full Text PDFTopological magnets comprising 2D magnetic layers with Curie temperatures (T ) exceeding room temperature are key for dissipationless quantum transport devices. However, the identification of a material with 2D ferromagnetic planes that exhibits an out-of-plane-magnetization remains a challenge. This study reports a ferromagnetic, topological, nodal-line, and semimetal MnAlGe composed of square-net Mn layers that are separated by nonmagnetic Al-Ge spacers.
View Article and Find Full Text PDFIn strongly correlated systems the strength of Coulomb interactions between electrons, relative to their kinetic energy, plays a central role in determining their emergent quantum mechanical phases. We perform resonant x-ray scattering on BiSrCaCuO, a prototypical cuprate superconductor, to probe electronic correlations within the CuO plane. We discover a dynamic quasi-circular pattern in the x-y scattering plane with a radius that matches the wave vector magnitude of the well-known static charge order.
View Article and Find Full Text PDFCharge density wave (CDW) order has been shown to compete and coexist with superconductivity in underdoped cuprates. Theoretical proposals for the CDW order include an unconventional -symmetry form factor CDW, evidence for which has emerged from measurements, including resonant soft x-ray scattering (RSXS) in YBaCuO (YBCO). Here, we revisit RSXS measurements of the CDW symmetry in YBCO, using a variation in the measurement geometry to provide enhanced sensitivity to orbital symmetry.
View Article and Find Full Text PDFObjectives: To evaluate the agreement among readers with different expertise in detecting suspicious lesions at prostate multiparametric MRI using Prostate Imaging Reporting and Data System (PI-RADS) version 2.1.
Methods: We evaluated 200 consecutive biopsy-naïve or previously negative biopsy men who underwent MRI for clinically suspected prostate cancer (PCa) between May and September 2017.
Ultrafast spectroscopies have become an important tool for elucidating the microscopic description and dynamical properties of quantum materials. In particular, by tracking the dynamics of nonthermal electrons, a material's dominant scattering processes can be revealed. Here, we present a method for extracting the electron-phonon coupling strength in the time domain, using time- and angle-resolved photoemission spectroscopy (TR-ARPES).
View Article and Find Full Text PDFGraphene is a powerful playground for studying a plethora of quantum phenomena. One of the remarkable properties of graphene arises when it is strained in particular geometries and the electrons behave as if they were under the influence of a magnetic field. Previously, these strain-induced pseudomagnetic fields have been explored on the nano- and micrometer-scale using scanning probe and transport measurements.
View Article and Find Full Text PDFAim: To establish the correlation between changes in body composition after neoadjuvant chemoradiotherapy (nCRT) and postoperative outcomes, in patients with advanced low rectal cancer.
Methods: Patients with clinical stage T≥3 or N+ rectal cancer who underwent nCRT and surgical resection were studied. Skeletal muscle, visceral, and subcutaneous fat cross-sectional area were measured by computed tomography before and after nCRT.
With its direct correspondence to electronic structure, angle-resolved photoemission spectroscopy (ARPES) is a ubiquitous tool for the study of solids. When extended to the temporal domain, time-resolved (TR)-ARPES offers the potential to move beyond equilibrium properties, exploring both the unoccupied electronic structure as well as its dynamical response under ultrafast perturbation. Historically, ultrafast extreme ultraviolet sources employing high-order harmonic generation (HHG) have required compromises that make it challenging to achieve a high energy resolution-which is highly desirable for many TR-ARPES studies-while producing high photon energies and a high photon flux.
View Article and Find Full Text PDFPurpose: To test the potential impact of pharmacokinetic parameters, derived from DCE-MRI analysis, on the diagnostic performance of PI-RADSv.2 classification in prostate lesions characterization.
Method: Among patients who underwent multiparametric prostate MRI (mpMRI) (January 2016-March 2018) followed by histological evaluation (targeted biopsies/prostatectomy), 103 men were retrospectively selected.