Publications by authors named "Damaris B Skouras"

Spinal cord injury (SCI) leads to irreversible functional deficits due to the disruption of axons and the death of neurons and glial cells. The inflammatory response that occurs in the injured spinal cord results in tissue degeneration; thus, targeting inflammation after acute SCI is expected to ameliorate histopathological evidence indicative of damage and, consequently, reduce functional disabilities. Interleukin 1 beta (IL-1β) and interleukin 18 (IL-18) are pro-inflammatory cytokines members of the IL-1 family that initiate and propagate inflammation.

View Article and Find Full Text PDF

Numerous studies demonstrate that neuroinflammation is a key player in the progression of Alzheimer's disease (AD). Interleukin (IL)-1β is a main inducer of inflammation and therefore a prime target for therapeutic options. The inactive IL-1β precursor requires processing by the the nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome into a mature and active form.

View Article and Find Full Text PDF

Background: Gout flares are driven by interleukin (IL)-1β. Dapansutrile inhibits the NLRP3 inflammasome and subsequent activation of IL-1β. In this study we aimed to investigate the safety and efficacy of orally administered dapansutrile in patients with a gout flare.

View Article and Find Full Text PDF

IL-1β and IL-18 are pro-inflammatory cytokines that are linked to inflammation. Activation of the NOD-like receptor protein 3 (NLRP3) inflammasome is involved in the maturation and secretion of IL-1β and IL-18 and, thus, plays a key role in the pathogenesis of many inflammatory conditions, including multiple sclerosis (MS). OLT1177™ (Dapansutrile) is a newly developed drug that is safe in humans and inhibits specifically the NLRP3 inflammasome.

View Article and Find Full Text PDF

Activation of the NLRP3 inflammasome induces maturation of IL-1β and IL-18, both validated targets for treating acute and chronic inflammatory diseases. Here, we demonstrate that OLT1177, an orally active β-sulfonyl nitrile molecule, inhibits activation of the NLRP3 inflammasome. In vitro, nanomolar concentrations of OLT1177 reduced IL-1β and IL-18 release following canonical and noncanonical NLRP3 inflammasome activation.

View Article and Find Full Text PDF