Publications by authors named "Dalya Ataca"

Many human cancers manifest the capability to circumvent attack by the adaptive immune system. In this work, we identified a component of immune evasion that involves frequent up-regulation of fragile X mental retardation protein (FMRP) in solid tumors. FMRP represses immune attack, as revealed by cancer cells engineered to lack its expression.

View Article and Find Full Text PDF

Estrogens and progesterone control breast development and carcinogenesis via their cognate receptors expressed in a subset of luminal cells in the mammary epithelium. How they control the extracellular matrix, important to breast physiology and tumorigenesis, remains unclear. Here we report that both hormones induce the secreted protease Adamts18 in myoepithelial cells by controlling Wnt4 expression with consequent paracrine canonical Wnt signaling activation.

View Article and Find Full Text PDF

Oestrogen receptor α (ERα) is a transcription factor with ligand-independent and ligand-dependent activation functions (AF)-1 and -2. Oestrogens control postnatal mammary gland development acting on a subset of mammary epithelial cells (MECs), termed sensor cells, which are ERα-positive by immunohistochemistry (IHC) and secrete paracrine factors, which stimulate ERα-negative responder cells. Here we show that deletion of AF-1 or AF-2 blocks pubertal ductal growth and subsequent development because both are required for expression of essential paracrine mediators.

View Article and Find Full Text PDF

The ADAMTS family comprises 19 secreted metalloproteinases that cleave extracellular matrix components and have diverse functions in numerous disease and physiological contexts. A number of them remain 'orphan' proteases and among them is ADAMTS18, which has been implicated in developmental eye disorders, platelet function and various malignancies. To assess in vivo function of ADAMTS18, we generated a mouse strain with inactivated Adamts18 alleles.

View Article and Find Full Text PDF

Most of mammary gland development occurs postnatally under the control of female reproductive hormones, which in turn interact with other endocrine factors. While hormones impinge on many tissues and trigger very complex biological responses, tissue recombination experiments with hormone receptor-deficient mammary epithelia revealed eminent roles for estrogens, progesterone, and prolactin receptor (PrlR) signaling that are intrinsic to the mammary epithelium. A subset of the luminal mammary epithelial cells expresses the estrogen receptor α (ERα), the progesterone receptor (PR), and the PrlR and act as sensor cells.

View Article and Find Full Text PDF

Somatic mutations altering lysine 171 of the IKBKB gene that encodes (IKKβ), the critical activating kinase in canonical (NFκB) signaling, have been described in splenic marginal zone lymphomas and multiple myeloma. Lysine 171 forms part of a cationic pocket that interacts with the activation loop phosphate in the activated wild type kinase. We show here that K171E IKKβ and K171T IKKβ represent kinases that are constitutively active even in the absence of activation loop phosphorylation.

View Article and Find Full Text PDF