Prog Nucl Magn Reson Spectrosc
July 2023
NMR spectroscopy is currently extensively used in binding assays for hit identification, but its use in dissociation constant determination is more limited when compared to other biophysical techniques, in particular for tight binders. Although NMR is quite suitable for measuring the binding strength of weak to medium affinity ligands with dissociation constant K > 1 μM, it has some limitations in the determination of the binding strength of tight binders (K < 1 μM). A theoretical analysis of the binding affinity determination of strong ligands using different types of NMR experiments is provided and practical guidelines are given for overcoming the limitations and for the proper set-up of the experiments.
View Article and Find Full Text PDFLigand-based F NMR screening is a highly effective and well-established hit-finding approach. The high sensitivity to protein binding makes it particularly suitable for fragment screening. Different criteria can be considered for generating fluorinated fragment libraries.
View Article and Find Full Text PDFFluorinated non-natural amino acids are useful tools for improving the bioavailability of peptides but can also serve as fluorinated probes in F NMR-based enzymatic assays. We report herein that the use of the non-natural α-quaternarized (R)-α-trifluoromethylalanine ((R)-α-TfmAla) provides convenient and accurate monitoring of trypsin proteolytic activity and increases resistance towards pepsin degradation.
View Article and Find Full Text PDFThe propensity of organic fluorine acting as a weak hydrogen bond acceptor (HBA) in intermolecular and intramolecular interactions has been the subject of many experimental and theoretical studies often reaching different conclusions. Over the last few years, new and stronger evidences have emerged for the direct involvement of fluorine in weak hydrogen bond (HB) formation. However, not all the fluorine atom types can act as weak HBA.
View Article and Find Full Text PDFThe substrate- or cofactor-based fluorine NMR screening, also known as n-FABS (n fluorine atoms for biochemical screening), represents a powerful method for performing a direct functional assay in the search of inhibitors or enhancers of an enzymatic reaction. Although it suffers from the intrinsic low sensitivity compared to other biophysical techniques usually applied in functional assays, it has some distinctive features that makes it appealing for tackling complex chemical and biological systems. Its strengths are represented by the easy set-up, robustness, flexibility, lack of signal interference and rich information content resulting in the identification of bona fide inhibitors and reliable determination of their inhibitory strength.
View Article and Find Full Text PDFScrapie is an ovine transmissible spongiform encephalopathy, and its susceptibility is associated with polymorphisms in the prion protein gene (PRNP). Genetic selection is currently the most effective mean for eradication of the susceptible VRQ allele in favour of resistant ARR allele. Maintenance of genetic diversity should be one of the major objectives in breeding programmes, especially in endangered breeds, and genetic information are an excellent alternative to pedigree data where these information are missing.
View Article and Find Full Text PDFLigand-based NMR screening represents a powerful method in fragment-based drug discovery for the identification of chemical matter interacting with the receptor of interest. The large dynamic range of these methods allows the detection of weakly binding ligands. However, the methodology has not been extensively used for quantifying the strength of these interactions.
View Article and Find Full Text PDFLigand-based fluorine NMR screening has gained popularity in drug discovery projects during the past decade and has become a powerful methodology to produce high quality hits. Its high sensitivity to protein binding makes it particularly suitable for fragment screening, allowing detection and binding strength measurement of very weak affinity ligands. The screening can be performed in direct or competition format, and its versatility allows application to complex biological and chemical systems.
View Article and Find Full Text PDFFluorine ligand-based NMR spectroscopy is now an established method for performing binding screening against a macromolecular target. Typically, the transverse relaxation rate of the fluorine signals is monitored in the absence and presence of the target. However, useful structural information can sometimes be obtained from the analysis of the fluorine isotropic chemical shift.
View Article and Find Full Text PDFOver the years a significant amount of effort has been put into the development of rapid and reliable methods to monitor the aggregation dynamics of the β amyloid peptide in real time. We present an alternative approach based on a suitable reporter or spy molecule and three different NMR experiments: WaterLOGSY, H selective T filter, and F T filter, for monitoring the initial self-aggregation process kinetics of the β amyloid peptide and identifying molecules that retard or accelerate the self-aggregation process. Although the proposed method is not a high-throughput assay, it avoids problems associated with interference events that are sometimes observed in fluorescence-based assays.
View Article and Find Full Text PDFChronic dysregulation of alternative complement pathway activation has been associated with diverse clinical disorders including age-related macular degeneration and paroxysmal nocturnal hemoglobinurea. Factor D is a trypsin-like serine protease with a narrow specificity for arginine in the P1 position, which catalyzes the first enzymatic reaction of the amplification loop of the alternative pathway. In this article, we describe two hit finding approaches leading to the discovery of new chemical matter for this pivotal protease of the complement system: in silico active site mapping for hot spot identification to guide rational structure-based design and NMR screening of focused and diverse fragment libraries.
View Article and Find Full Text PDFLigand-based F NMR screening represents an efficient approach for performing binding assays. The high sensitivity of the methodology to receptor binding allows the detection of weak affinity ligands. The observable NMR parameters that are typically used are the F transverse relaxation rate and isotropic chemical shift.
View Article and Find Full Text PDFIt is known that strong hydrogen-bonding interactions play an important role in many chemical and biological systems. However, weak or very weak hydrogen bonds, which are often difficult to detect and characterize, may also be relevant in many recognition and reaction processes. Fluorine serving as a hydrogen-bond acceptor has been the subject of many controversial discussions and there are different opinions about it.
View Article and Find Full Text PDFNuclear magnetic resonance (NMR)-based screening has been recognized as a powerful approach for the identification and characterization of molecules interacting with pharmaceutical targets. Indeed, several NMR methods have been developed and successfully applied to many drug discovery projects. Whereas most of these approaches have targeted isolated biomolecular receptors, very few cases are reported with the screening performed in intact cells and cell extracts.
View Article and Find Full Text PDFTaenia martis is a tapeworm affecting mustelids, with rodents serving as intermediate hosts. The larval stage (cysticercus) has been found before only rarely in humans or primates. We hereby describe a case of cerebral T.
View Article and Find Full Text PDFESI-MS is a well established technique for the study of biopolymers (nucleic acids, proteins) and their non covalent adducts, due to its capacity to detect ligand-target complexes in the gas phase and allows inference of ligand-target binding in solution. In this article we used this approach to investigate the interaction of ligands to the Heat Shock Protein 90 (Hsp90). This enzyme is a molecular chaperone involved in the folding and maturation of several proteins which has been subjected in the last years to intensive drug discovery efforts due to its key role in cancer.
View Article and Find Full Text PDFHydrogen-bonding interactions play an important role in many chemical and biological systems. Fluorine acting as a hydrogen-bond acceptor in intermolecular and intramolecular interactions has been the subject of many controversial discussions and there are different opinions about it. Recently, we have proposed a correlation between the propensity of fluorine to be involved in hydrogen bonds and its (19)F NMR chemical shift.
View Article and Find Full Text PDFIn the last decade the heat shock protein 90 (Hsp90) has emerged as a major therapeutic target and many efforts have been dedicated to the discovery of Hsp90 inhibitors as new potent anticancer agents. Here we report the identification of a novel class of Hsp90 inhibitors by means of a biophysical FAXS-NMR based screening of a library of fragments. The use of X-ray structure information combined with modeling studies enabled the fragment evolution of the initial triazoloquinazoline hit to a class of compounds with nanomolar potency and drug-like properties suited for further lead optimization.
View Article and Find Full Text PDFTelomeric repeat-containing RNA (TERRA) is a novel and very attractive antitumoral target. Here, we report the first successful application of (19)F-NMR fragment-based screening to identify chemically diverse compounds that bind to an RNA molecule such as TERRA. We have built a library of 355 fluorinated fragments, and checked their interaction with a long telomeric RNA as a target molecule.
View Article and Find Full Text PDFIn order to defend themselves against arthropod herbivores, maize plants produce 1,4-benzoxazin-3-ones (BXs), which are stored as weakly active glucosides in the vacuole. Upon tissue disruption, BXs come into contact with β-glucosidases, resulting in the release of active aglycones and their breakdown products. While some aglycones can be reglucosylated by specialist herbivores, little is known about how they detoxify BX breakdown products.
View Article and Find Full Text PDFThe possibility of measuring the action of inhibitors of specific enzymatic reactions in intact cells, cell lysates or membrane preparations represents a major advance in the lead discovery process. Despite the relevance of assaying in physiological conditions, only a small number of biophysical techniques, often requiring complex set-up, are applicable to these sample types. Here, we demonstrate the first application of n-fluorine atoms for biochemical screening (n-FABS), a homogeneous and versatile assay based on (19) F NMR spectroscopy, to the detection of high- and low-affinity inhibitors of a membrane enzyme in cell extracts and determination of their IC50 values.
View Article and Find Full Text PDFIntroduction: Nervous system involvement occurs in 5 to 15% of the patients with sarcoidosis. Neurosarcoidosis remains very difficult to diagnose because clinical presentation and imaging characteristics lack specificity.
Observation: We report a 26-year-old man who gradually developed headaches, memory disturbance and epilepsy.
Fragment screening performed with (19) F NMR spectroscopy is becoming increasingly popular in drug discovery projects. With this approach, libraries of fluorinated fragments are first screened using the direct-mode format of the assay. The choice of fluorinated motifs present in the library is fundamental in order to ensure a large coverage of chemical space and local environment of fluorine (LEF).
View Article and Find Full Text PDFDespite the recognized importance of membrane proteins as pharmaceutical targets, the reliable identification of fragment hits that are able to bind these proteins is still a major challenge. Among different ¹⁹F NMR spectroscopic methods, n-fluorine atoms for biochemical screening (n-FABS) is a highly sensitive technique that has been used efficiently for fragment screening, but its application for membrane enzymes has not been reported yet. Herein, we present the first successful application of n-FABS to the discovery of novel fragment hits, targeting the membrane-bound enzyme fatty acid amide hydrolase (FAAH), using a library of fluorinated fragments generated based on the different local environment of fluorine concept.
View Article and Find Full Text PDFEpilepsy is a common disorder but diagnosis remains largely clinical. Although MRI and EEG significantly aid the diagnosis of epilepsy, these techniques may also be misleading and indicate abnormalities not related to phenomenology. Consequences of erroneous diagnosis of epilepsy may lead to aggressive and escalating pharmacotherapy with potentially serious side effects.
View Article and Find Full Text PDF