Nanomaterials (Basel)
September 2024
This study introduces a novel thermoacoustic (TA) focusing system enhanced by Airy beam-based acoustic metasurfaces, significantly improving acoustic focusing and efficiency. The system integrates a TA emitter, fabricated from carbon nanotube (CNT) films, with a binary acoustic metasurface capable of generating quasi-Airy beams. Through finite element simulations, the system's heat conduction, acoustic focusing, and self-healing properties were thoroughly analyzed.
View Article and Find Full Text PDFRecent advancements in marine technology have highlighted the urgent need for enhanced underwater acoustic applications, from sonar detection to communication and noise cancellation, driving the pursuit of innovative transducer technologies. In this paper, a new underwater thermoacoustic (TA) transducer made from carbon nanotube (CNT) sponge is designed to achieve wide bandwidth, high energy conversion efficiency, simple structure, good transient response, and stable sound response, utilizing the TA effect through electro-thermal modulation. The transducer has potential application in underwater acoustic communication.
View Article and Find Full Text PDFUltrasonic therapy has drawn increasing attention due to its noninvasiveness, great sensitivity and strong penetration capabilities. However, most of traditional rigid ultrasonic probes cannot achieve a solid interfacial contact with irregular nonplanar surfaces, which leads to unstable therapeutic effects and limitations of widespread use in practical applications. In this paper, a new flexible ultrasonic patch based on carbon nanotube (CNT) films is designed and fabricated to achieve a potential application in ultrasonic therapy.
View Article and Find Full Text PDF