Publications by authors named "Dalton W"

Solid tumors vary by the immunogenic potential of the tumor microenvironment (TME) and the likelihood of response to immunotherapy. The emerging literature has identified key immune cell populations that significantly impact immune activation or suppression within the TME. This study investigated candidate T-cell populations and their differential infiltration within different tumor types as estimated from mRNA co-expression levels of the corresponding cellular markers.

View Article and Find Full Text PDF

Background And Aims: Isocitrate dehydrogenase 1 ( IDH1 )-mutant cholangiocarcinoma (CCA) is a highly lethal subtype of hepatobiliary cancer that is often resistant to immune checkpoint inhibitor therapies. We evaluated the effects of IDH1 mutations in CCA cells on the tumor immune microenvironment and identified opportunities for therapeutic intervention.

Approach And Results: Analysis of 2606 human CCA tumors using deconvolution of RNA-sequencing data identified decreased CD8+ T cell and increased M2-like tumor-associated macrophage (TAM) infiltration in IDH1 -mutant compared to IDH1 wild-type tumors.

View Article and Find Full Text PDF

Several therapeutic agents have been approved for treating multiple myeloma, a cancer of bone marrow-resident plasma cells. Predictive biomarkers for drug response could help guide clinical strategies to optimize outcomes. In this study, we present an integrated functional genomic analysis of tumor samples from patients multiple myeloma that were assessed for their ex vivo drug sensitivity to 37 drugs, clinical variables, cytogenetics, mutational profiles, and transcriptomes.

View Article and Find Full Text PDF

Background: Cancer initiation, progression, and immune evasion depend on the tumor microenvironment (TME). Thus, understanding the TME immune architecture is essential for understanding tumor metastasis and therapy response. This study aimed to create an immune cell states (CSs) atlas using bulk RNA-seq data enriched by eco-type analyses to resolve the complex immune architectures in the TME.

View Article and Find Full Text PDF

Among the most common genetic alterations in myelodysplastic syndromes (MDS) are mutations in the spliceosome gene SF3B1. Such mutations induce specific RNA missplicing events, directly promote ring sideroblast (RS) formation, and generally associate with a more favorable prognosis. However, not all SF3B1 mutations are the same, and little is known about how distinct hotspots influence disease.

View Article and Find Full Text PDF
Article Synopsis
  • Notch receptor signaling plays a crucial role in tumor development, particularly in non-small cell lung cancer (NSCLC), where the ligand Jagged2 (JAG2) is linked to poorer survival outcomes.
  • In experimental models, removing Jag2 from cancer cells led to reduced tumor growth and enhanced immune responses, particularly activating T cells, whereas Jag1 deletion had no similar effect.
  • The study highlights that Jag2 fosters an immunosuppressive environment, but its absence triggers immune activation through pathways involving other Notch ligands, leading to macrophages producing factors that support tumor-fighting T cells.
View Article and Find Full Text PDF

Background: We aimed to determine the prognostic value of an immunoscore reflecting CD3+ and CD8+ T cell density estimated from real-world transcriptomic data of a patient cohort with advanced malignancies treated with immune checkpoint inhibitors (ICIs) in an effort to validate a reference for future machine learning-based biomarker development.

Methods: Transcriptomic data was collected under the Total Cancer Care Protocol (NCT03977402) Avatar project. The real-world immunoscore for each patient was calculated based on the estimated densities of tumor CD3+ and CD8+ T cells utilizing CIBERSORTx and the LM22 gene signature matrix.

View Article and Find Full Text PDF

Identification of genomic signatures with consistent clinicopathological features in myelodysplastic/myeloproliferative neoplasm (MDS/MPN) is critical for improved diagnosis, elucidation of biology, inclusion in clinical trials, and development of therapies. We describe clinical and pathological features with co-existence of mutations in ASXL1 (missense or nonsense), SRSF2, and SKI homologous region of SETBP1, in 18 patients. Median age was 68 years with a male predominance (83%).

View Article and Find Full Text PDF

Coenzyme A (CoA) is an important cellular metabolite that is critical for metabolic processes and the regulation of gene expression. Recent discovery of the antioxidant function of CoA has highlighted its protective role that leads to the formation of a mixed disulfide bond with protein cysteines, which is termed protein CoAlation. To date, more than 2000 CoAlated bacterial and mammalian proteins have been identified in cellular responses to oxidative stress, with the majority being involved in metabolic pathways (60%).

View Article and Find Full Text PDF
Article Synopsis
  • * Unlike typical SF3B1 mutations, the E592K variant creates a different RNA missplicing pattern and still allows normal splicing of certain genes related to sideroblastic anemia.
  • * These findings indicate that patients with the E592K mutation should receive different treatment considerations compared to those with low-risk MDS who have more common mutations that respond well to luspatercept.
View Article and Find Full Text PDF

Background: Prophylactic use of tranexamic acid at the time of cesarean delivery has been shown to decrease the calculated blood loss, but the effect on the need for blood transfusions is unclear.

Methods: We randomly assigned patients undergoing cesarean delivery at 31 U.S.

View Article and Find Full Text PDF

The combination of venetoclax and hypomethylating agent (HMA/venetoclax) has emerged as a treatment option for patients with de novo acute myeloid leukemia (AML) who are unfit to receive intensive chemotherapy. In this single-center retrospective study, we evaluated clinical outcomes following treatment with HMA/venetoclax in 35 patients with advanced myeloproliferative neoplasms, myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes or AML with extramedullary disease. The composite complete remission (CR) rate (including confirmed/presumed complete cytogenetic response, acute leukemia response-complete, CR and CR with incomplete hematologic recovery) was 42.

View Article and Find Full Text PDF

Patients age ≥55 years with acute lymphoblastic leukemia (ALL) fare poorly with conventional chemotherapy, with a 5-year overall survival (OS) of ∼20%. Tyrosine kinase inhibitors and novel B cell-targeted therapies can improve outcomes, but rates of relapse and death in remission remain high. Allogeneic blood or marrow transplantation (alloBMT) provides an alternative consolidation strategy, and post-transplantation cyclophosphamide (PTCy) facilitates HLA-mismatched transplantations with low rates of nonrelapse mortality (NRM) and graft-versus-host disease (GVHD).

View Article and Find Full Text PDF

Better understanding of the biology of resistance to DNA methyltransferase (DNMT) inhibitors is required to identify therapies that can improve their efficacy for patients with high-risk myelodysplastic syndrome (MDS). CCRL2 is an atypical chemokine receptor that is upregulated in CD34+ cells from MDS patients and induces proliferation of MDS and secondary acute myeloid leukemia (sAML) cells. In this study, we evaluated any role that CCRL2 may have in the regulation of pathways associated with poor response or resistance to DNMT inhibitors.

View Article and Find Full Text PDF

Precise and reliable cell-specific gene delivery remains technically challenging. Here we report a splicing-based approach for controlling gene expression whereby separate translational reading frames are coupled to the inclusion or exclusion of mutated, frameshifting cell-specific alternative exons. Candidate exons are identified by analyzing thousands of publicly available RNA sequencing datasets and filtering by cell specificity, conservation, and local intron length.

View Article and Find Full Text PDF

Coenzyme A (CoA) is a key cellular metabolite known for its diverse functions in metabolism and regulation of gene expression. CoA was recently shown to play an important antioxidant role under various cellular stress conditions by forming a disulfide bond with proteins, termed CoAlation. Using anti-CoA antibodies and liquid chromatography tandem mass spectrometry (LC-MS/MS) methodologies, CoAlated proteins were identified from various organisms/tissues/cell-lines under stress conditions.

View Article and Find Full Text PDF

There are currently no known predictors of myelodysplastic syndrome (MDS)/myeloproliferative overlap neoplasm (MPN) patients' response to hypomethylating agents (HMA). Forty-three patients with MDS/MPN who were treated with HMA during chronic phase and had next-generation sequencing using the established 63-genes panel were identified. Complete and partial remission and marrow response were assessed based on the MDS/MPN International Working Group response criteria.

View Article and Find Full Text PDF

Macrophages within the bone marrow (BM) microenvironment take on unexpected roles in acute myeloid leukemia (AML) as reported by Moore and colleagues in this issue of the JCI. In contrast to solid tumors, where tumor-associated macrophages frequently assume an immunosuppressive phenotype that promotes tumor progression, this study revealed that BM macrophages repressed leukemia expansion in AML through a pathway called LC3-associated phagocytosis (LAP). After phagocytosis of dead and dying leukemic cells, including the mitochondria within the leukemic blasts, mitochondrial DNA activated stimulator of IFN genes (STING), leading to inflammatory signals that enhanced phagocytosis and restrained leukemic cell expansion.

View Article and Find Full Text PDF

Activating variants in the PEST region of have been associated with aggressive phenotypes in human cancers, including triple-negative breast cancer (TNBC). Previous studies suggested that PEST domain variants in TNBC patients resulted in increased cell proliferation, invasiveness, and decreased overall survival. In this study, we assess the phenotypic transformation of activating variants and their response to standard of care therapies.

View Article and Find Full Text PDF

The identification of new pathways supporting the myelodysplastic syndrome (MDS) primitive cells growth is required to develop targeted therapies. Within myeloid malignancies, men have worse outcomes than women, suggesting male sex hormone-driven effects in malignant hematopoiesis. Androgen receptor promotes the expression of five granulocyte colony-stimulating factor receptor-regulated genes.

View Article and Find Full Text PDF

We describe outcomes after post-transplantation cyclophosphamide and nonmyeloablative conditioning-based allogeneic blood or marrow transplantation for myelofibrosis using matched or mismatched related or unrelated donors. The conditioning regimen consisted of fludarabine, cyclophosphamide, and total body irradiation. Forty-two patients were included, with a median age of 63 years, of whom 19% had Dynamic International Prognostic Scoring System (DIPSS)-plus intermediate-1 risk, 60% had intermediate-2 risk, and 21% had high-risk disease, and 60% had at least 1 high-risk somatic mutation.

View Article and Find Full Text PDF

Introduction: Risk stratification is crucial to the appropriate management of many diseases, but in patients with myelodysplastic syndromes (MDS), for whom expected survival can vary greatly, accurate disease prognostication is especially important. This is further supported by a relative lack of therapies in MDS, and thus we must prognosticate carefully and accurately. Currently, patients with MDS are often grouped into higher-risk (HR) versus lower-risk (LR) disease using clinical prognostic scoring systems, but these systems have limitations.

View Article and Find Full Text PDF