Publications by authors named "Dalton R Gibbs"

Holliday junctions (HJs) are an important class of nucleic acid structure utilized in DNA break repair processes. As such, these structures have great importance as therapeutic targets and for understanding the onset and development of various diseases. Single-molecule fluorescence resonance energy transfer (smFRET) has been used to study HJ structure-fluctuation kinetics, but given the rapid time scales associated with these kinetics (approximately sub-milliseconds) and the limited bandwidth of smFRET, these studies typically require one to slow down the structure fluctuations using divalent ions (e.

View Article and Find Full Text PDF

The repair of double-stranded DNA breaks via homologous recombination involves a four-way cross-strand intermediate known as Holliday junction (HJ), which is recognized, processed, and resolved by a specific set of proteins. RuvA, a prokaryotic HJ-binding protein, is known to stabilize the square-planar conformation of the HJ, which is otherwise a short-lived intermediate. Despite much progress being made regarding the molecular mechanism of RuvA-HJ interactions, the mechanochemical aspect of this protein-HJ complex is yet to be investigated.

View Article and Find Full Text PDF

Homologous recombination (HR) is a complex biological process and is central to meiosis and for repair of DNA double-strand breaks. Although the HR process has been the subject of intensive study for more than three decades, the complex protein-protein and protein-DNA interactions during HR present a significant challenge for determining the molecular mechanism(s) of the process. This knowledge gap is largely because of the dynamic interactions between HR proteins and DNA which is difficult to capture by routine biochemical or structural biology methods.

View Article and Find Full Text PDF

Prism-based total internal reflection fluorescence (pTIRF) microscopy is one of the most widely used techniques for the single molecule analysis of a vast range of samples including biomolecules, nanostructures, and cells, to name a few. It allows for excitation of surface bound molecules/particles/quantum dots via evanescent field of a confined region of space, which is beneficial not only for single molecule detection but also for analysis of single molecule dynamics and for acquiring kinetics data. However, there is neither a commercial microscope available for purchase nor a detailed guide dedicated for building this microscope.

View Article and Find Full Text PDF

Interactions between DNA and motor proteins regulate nearly all biological functions of DNA such as gene expression, DNA replication and repair, and transcription. During the late stages of homologous recombination (HR), the Escherichia coli recombination machinery, RuvABC, resolves the four-way DNA motifs called Holliday junctions (HJs) that are formed during exchange of nucleotide sequences between two homologous duplex DNA. Although the formation of the RuvA-HJ complex is known to be the first critical step in the RuvABC pathway, the mechanism for the binding interaction between RuvA and HJ has remained elusive.

View Article and Find Full Text PDF

Modification of proteins by ubiquitin or ubiquitin-like proteins (UBLs) is a critical cellular process implicated in a variety of cellular states and outcomes. A prerequisite for target protein modification by a UBL is the activation of the latter by activating enzymes (E1s). Here, we present the crystal structure of the non-canonical homodimeric E1, UBA5, in complex with its cognate UBL, UFM1, and supporting biochemical experiments.

View Article and Find Full Text PDF