Background: The kallikrein-kinin system (KKS) is a complex biochemical pathway that plays a crucial role in regulating several physiological processes, including inflammation, coagulation, and blood pressure. Dysregulation of the KKS has been associated with several pathological conditions such as hereditary angioedema (HAE), hypertension, and stroke. Developing an accurate quantitative model of the KKS may provide a better understanding of its role in health and disease and facilitate the rapid and targeted development of effective therapies for KKS-related disorders.
View Article and Find Full Text PDFA numerical method is proposed to simulate the roughness scale interface dynamics of a slow-moving fluid interface as it advances over a chemically homogeneous rough surface. Analysis of the governing augmented Navier-Stokes and Young's boundary condition equations shows how the local interface behavior can be represented via a series of incrementally advanced equilibrium interfacial morphologies. Combined with a roughness scale mechanical energy balance [Harvie, D.
View Article and Find Full Text PDFHypothesis: Understanding contact angle hysteresis on rough surfaces is important as most industrially relevant and naturally occurring surfaces possess some form of random or structured roughness. We hypothesise that hysteresis can be described by the dilute defect model of Joanny & de Gennes [1] and that the energy dissipation occurring during the stick-slip motion of the contact line is key to developing a predictive equation for hysteresis.
Experiments: We measured hysteresis on surfaces with randomly distributed and periodically arranged microscopic cylindrical pillars for a variety of different liquids in air.
Thin-film composite (TFC) polymeric membranes have attracted increasing interest to meet the demands of industrial gas separation. However, the development of high-performance TFC membranes within their current configuration faces two key challenges: (i) the thickness-dependent gas permeability of polymeric materials (mainly poly(dimethylsiloxane) (PDMS)) and (ii) the geometric restriction effect due to the limited pore accessibility of the underlying porous substrate. Here we demonstrate that the incorporation of trace amounts (∼1.
View Article and Find Full Text PDFWe investigate the capacity of published numerical models of thrombin generation to reproduce experimentally observed threshold behavior under conditions in which diffusion and/or flow are important. Computational fluid dynamics simulations incorporating species diffusion, fluid flow, and biochemical reactions are compared with published data for thrombin generation in vitro in 1) quiescent plasma exposed to patches of tissue factor and 2) plasma perfused through a capillary coated with tissue factor. Clot time is correctly predicted in individual cases, and some models qualitatively replicate thrombin generation thresholds across a series of tissue factor patch sizes or wall shear rates.
View Article and Find Full Text PDFShear induced particle pressure occurs in concentrated suspensions of particles. Importantly, the significance of the shear induced particle pressure has not been recognized in polymer rheology. The shear induced particle pressure results in an inward pressure on the polymer chains resulting in a shear dependent compressive force.
View Article and Find Full Text PDFThe manipulation of biomolecules, fluid and ionic current in a new breed of integrated nanofluidic devices requires a quantitative understanding of electrokinetics at the silica/water interface. The conventional capacitor-based electrokinetic Electric Double Layer (EDL) models for this interface have some known shortcomings, as evidenced by a lack of consistency within the literature for the (i) equilibrium constants of surface silanol groups, (ii) Stern layer capacitance, (iii) zeta (ζ) potential measured by various electrokinetic methods, and (iv) surface conductivity. In this study, we consider how the experimentally observable viscoelectric effect - that is, the increase of the local viscosity due to the polarisation of polar solvents - affects electrokinetcs at the silica/water interface.
View Article and Find Full Text PDFUsing a recently developed multiphase electrokinetic model, we simulate the transient electrohydrodynamic response of a liquid drop containing ions, to both small and large values of electric field. The temporal evolution is found to be governed primarily by two dimensionless groups: (i) Ohnesorge number (Oh), a ratio of viscous to inertio-capillary effects, and (ii) inverse dimensionless Debye length (κ), a measure of the diffuse regions of charge that develop in the drop. The effects of dielectric polarization dominate at low Oh, while effects of separated charge gain importance with increase in Oh.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2015
Isoelectric focusing of proteins in a silica nanofluidic channel filled with citric acid and disodium phosphate buffers is investigated via numerical simulation. Ions in the channel migrate in response to (i) the electric field acting on their charge and (ii) the bulk electroosmotic flow (which is directed toward the cathode). Proteins are focused near the low pH (anode) end when the electromigration effect is more significant and closer to the high pH (cathode) end when the electroosmotic effect dominates.
View Article and Find Full Text PDFThe simultaneous concentration gradient focusing and separation of proteins in a silica nanofluidic channel of various geometries is investigated experimentally and theoretically. Previous modelling of a similar device [Inglis et al., Angew.
View Article and Find Full Text PDFPrevious work has demonstrated the simultaneous concentration and separation of proteins via a stable ion concentration gradient established within a nanochannel (Inglis Angew. Chem., Int.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2012
Existing microfluidic circuit theories consider conservation of volume and conservation of total charge at each channel intersection (node) that exists within a circuit. However, in a strict sense conservation of number (or charge) for each ion species that is present should also be applied. To be able to perform such a conservation the currents due to the movement of each ion species (electrokinetic ion currents) that occur within each channel need to be known.
View Article and Find Full Text PDFA mathematical framework for analysing electrokinetic flow in microchannel networks is outlined. The model is based on conservation of volume and total charge at network junctions, but in contrast to earlier theories also incorporates conservation of ion charge there. The model is applied to mixed pressure-driven/electro-osmotic flows of binary electrolytes through homogeneous microchannels as well as a 4:1:4 contraction-expansion series network.
View Article and Find Full Text PDF