J Venom Anim Toxins Incl Trop Dis
December 2020
Background: Certain environmental toxins permanently damage the thymic epithelium, accelerate immune senescence and trigger secondary immune pathologies. However, the exact underlying cellular mechanisms and pathways of permanent immune intoxication remain unknown. The aim of the present study was to demonstrate gene expressional changes of apoptosis-related cellular pathways in human thymic epithelial cells following exposure to snake venom from and
Methods: Snake venoms were characterized by analytical methods including reversed phase high-performance liquid chromatography and sodium dodecyl sulphate-polyacrylamide gel electrophoresis, then applied on human thymic epithelial cells (1889c) for 24 h at 10 μg/mL (as used in previous TaqMan Array study).
Genetic and epigenetic regulation as well as immune surveillance are known defense mechanisms to protect organisms from developing cancer. Based on experimental evidence, we proposed that small metabolically active molecules accumulating in cancer cells may play a role in an alternative antitumor surveillance system. Previously, we reported that treatment with a mixture of experimentally selected small molecules, usually found in the serum (defined 'active mixture', AM), selectively induces apoptosis in cancer cells and significantly inhibits tumor formation in vivo.
View Article and Find Full Text PDFBackground: Earlier we assumed that small molecules selectively accumulated in cancer cells might have a role in a defense system capable of killing cancer cells. We reported earlier that an experimentally selected mixture of substances present in the serum ("active mixture," AM) shows a selective toxic effect in vitro and in vivo on various cancer cells. In this study we investigated additional compounds found in the serum to further expand our knowledge of this defense system.
View Article and Find Full Text PDF