Publications by authors named "Dallas S"

Osteocytes are the bone cells that are thought to respond to mechanical strains and fluid flow shear stress (FFSS) by activating various biological pathways in a process known as mechanotransduction. Confocal image-derived models of osteocyte networks are a valuable tool for conducting Computational Fluid Dynamics (CFD) analysis to evaluate shear stresses on the osteocyte membrane, which cannot be determined by direct measurement. Computational modeling using these high-resolution images of the microstructural architecture of bone was used to numerically simulate the mechanical loading exerted on bone and understand the load-induced stimulation of osteocytes.

View Article and Find Full Text PDF

Antimicrobial resistance is a growing problem. Novel resistance mechanisms continue to emerge, and the pipeline of antimicrobial development struggles to keep up. Antimicrobial stewardship and proper infection control are key in preventing the spread of these infections.

View Article and Find Full Text PDF

Among carbapenem-resistant Enterobacterales (CRE) are diverse mechanisms, including those that are resistant to meropenem but susceptible to ertapenem, adding further complexity to the clinical landscape. This study investigates the emergence of ertapenem-resistant, meropenem-susceptible (ErMs) and CRE across five hospitals in San Antonio, Texas, USA, from 2012 to 2018. The majority of the CRE isolates were non-carbapenemase producers (NCP; 54%; 41/76); 56% of all NCP isolates had an ErMs phenotype.

View Article and Find Full Text PDF

Exercise and physical activity exert mechanical loading on the bones which induces bone formation. However, the relationship between the osteocyte lacunar-canalicular morphology and mechanical stress experienced locally by osteocytes transducing signals for bone formation is not fully understood. In this study, we used computational modeling to predict the effect of canalicular density, the number of fluid inlets, and load direction on fluid flow shear stress (FFSS) and bone strains and how these might change following the microstructural deterioration of the lacunar-canalicular network that occurs with aging.

View Article and Find Full Text PDF

Mouse ligature-induced periodontitis (LIP) has been used to study bone loss in periodontitis. However, the role of osteocytes in LIP remains unclear. Furthermore, there is no consensus on the choice of alveolar bone parameters and time points to evaluate LIP.

View Article and Find Full Text PDF

Typically, therapeutic proteins (TPs) have a low risk for eliciting meaningful drug interactions (DIs). However, there are select instances where TP drug interactions (TP-DIs) of clinical concern can occur. This white paper discusses the various types of TP-DIs involving mechanisms such as changes in disease state, target-mediated drug disposition, neonatal Fc receptor (FcRn), or antidrug antibodies formation.

View Article and Find Full Text PDF

Frailty is the hallmark of aging that can be delayed with exercise. The present studies were initiated based on the hypothesis that long-term voluntary wheel running (VWR) in female mice from 12 to 18 or 22 months of age would have beneficial effects on the musculoskeletal system. Mice were separated into high (HBW) and low (LBW) body weight based on final body weights upon termination of experiments.

View Article and Find Full Text PDF

Objective: To create an antibiogram derived exclusively from our obstetric population and compare the clinical isolates and susceptibilities to our institutional antibiogram.

Methods: Data collected by the University Hospital Clinical Microbiology Laboratory in SSC Soft from 01/01/2018 to 12/31/2018 was used to generate our institutional antibiogram. For comparison, we created an obstetric (OB) antibiogram using all clinical isolates collected during the same time interval from OB triage, labor & delivery, antepartum and postpartum wards.

View Article and Find Full Text PDF

Purpose: To assess colony morphology of  isolates for target shape (T1) and its utility in the identification of methicillin-resistant  (MRSA).

Methods: u species isolated from blood cultures were studied for colony morphology characteristics. A polymerase chain reaction (PCR) test was performed on positive blood culture bottles for the detection of  and methicillin resistance.

View Article and Find Full Text PDF

Identifying individuals with hereditary syndromes allows for timely cancer surveillance, opportunities for risk reduction, and syndrome-specific management. Establishing criteria for hereditary cancer risk assessment allows for the identification of individuals who are carriers of pathogenic genetic variants. The NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal provides recommendations for the assessment and management of patients at risk for or diagnosed with high-risk colorectal cancer syndromes.

View Article and Find Full Text PDF

Selective cyclooxygenase (COX)-2 inhibitors have been extensively studied for colorectal cancer (CRC) chemoprevention. Celecoxib has been reported to reduce the incidence of colorectal adenomas and CRC but is also associated with an increased risk of cardiovascular events. Here, we report a series of gut-restricted, selective COX-2 inhibitors characterized by high colonic exposure and minimized systemic exposure.

View Article and Find Full Text PDF

Background: Carbapenem-resistant Enterobacterales (CRE) pose a significant global public health threat. Resistance among CRE is particularly complex, owing to numerous possible resistance mechanisms and broad definitions. We aimed to characterize the clinical and molecular profiles of CRE in the South Texas region.

View Article and Find Full Text PDF

Recent advances have revived interest in the concept of osteocyte perilacunar/canalicular remodeling (PLR) and have motivated efforts to identify the mechanisms regulating this process in bone in the context of normal physiology and pathological conditions. Here, we describe several methods that are evaluating morphological changes associated with PLR function of osteocytes.

View Article and Find Full Text PDF

Translational and ADME Sciences Leadership Group Induction Working Group (IWG) presents an analysis on the time course for cytochrome P450 induction in primary human hepatocytes. Induction of CYP1A2, CYP2B6, and CYP3A4 was evaluated by seven IWG laboratories after incubation with prototypical inducers (omeprazole, phenobarbital, rifampicin, or efavirenz) for 6-72 hours. The effect of incubation duration and model-fitting approaches on induction parameters (E and EC) and drug-drug interaction (DDI) risk assessment was determined.

View Article and Find Full Text PDF

is a major cause of community-acquired pneumonia. There are limited data in the United States on the molecular epidemiological characteristics of We collected 446 -positive specimens from 9 states between August 2012 and October 2018. Culture, antimicrobial susceptibility testing, P1 subtyping, and multilocus VNTR (variable-number tandem repeats) analysis (MLVA) were performed to characterize the isolates.

View Article and Find Full Text PDF

Although overlooked in the past, osteocytes have come to the forefront of skeletal biology and are now recognized as a key cell type that integrates hormonal, mechanical and other signals to control bone mass through regulation of both osteoblast and osteoclast activity. With the surge of recent interest in osteocytes as bone regulatory cells and the discovery that they also function as endocrine regulators of phosphate homeostasis, there has been renewed interest in understanding the structure and function of these unique and relatively inaccessible cells. Osteocytes are embedded within the mineralized bone matrix and are housed within a complex lacunocanalicular system which connects them with the circulation and with other organ systems.

View Article and Find Full Text PDF

Malassezia sp. require exogenous lipid for growth and can cause disseminated infection in neonates requiring intravenous lipid infusions. Usually, Malassezia infection in neonates presents as fungemia or hematogenous dissemination into bone or lungs.

View Article and Find Full Text PDF

Osteocytes are thought to be the primary mechanosensory cells within bone, regulating both osteoclasts and osteoblasts to control load induced changes in bone resorption and formation. Osteocytes initiate intracellular responses including activating the Wnt/β-catenin signaling pathway after experiencing mechanical forces. In response to changing mechanical loads (strain) the osteocytes signal to cells on the bone surface.

View Article and Find Full Text PDF

Although aging represents the most important epidemiologic risk factor for fibrotic disease, the reasons for this are incompletely understood. Excess collagen deposition in tissues is the sine qua non of tissue fibrosis and can be viewed as an imbalance between collagen production and collagen degradation. Yet we still lack a detailed understanding of the changes that take place during development, maturation, and aging in extracellular matrix (ECM) dynamics.

View Article and Find Full Text PDF

We evaluated six commercial molecular tests targeting , namely, the BioFire FilmArray respiratory panel (RP), the Meridian Alethia Mycoplasma Direct, the GenMark ePlex respiratory pathogen panel (RPP), the Luminex NxTAG RPP, the ELITech ELITe InGenius MGB research use only (RUO) PCR, and the SpeeDx MP assays. Laboratory-developed PCR assays at the University of Alabama at Birmingham and the Centers for Disease Control and Prevention were used as reference standards. Among 428 specimens, 212 were designated confirmed positives for The highest clinical sensitivities were found with the InGenius PCR (99.

View Article and Find Full Text PDF
Article Synopsis
  • Macrophages play a critical role in cardiac repair after a heart attack by modifying the extracellular matrix and activating fibroblasts for collagen production.
  • Research shows that macrophages not only help initiate scar formation but also directly contribute collagen to the scar tissue through a process demonstrated in both zebrafish and mice.
  • This study challenges the traditional view that collagen deposition is solely the responsibility of myofibroblasts, indicating that macrophages are significant players in the fibrotic response following heart injury.
View Article and Find Full Text PDF