To evaluate the role of iron in sodium iodate (NaIO)-induced model of age-related macular degeneration (AMD) in ARPE-19 cells in-vitro and in mouse models in-vivo. ARPE-19 cells, a human retinal pigment epithelial cell line, was exposed to 10 mM NaIO for 24 h, and the expression and localization of major iron modulating proteins was evaluated by Western blotting (WB) and immunostaining. Synthesis and maturation of cathepsin-D (cat-D), a lysosomal enzyme, was evaluated by quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) and WB, respectively.
View Article and Find Full Text PDFAccumulation of redox-active iron in human sporadic Creutzfeldt-Jakob disease (sCJD) brain tissue and scrapie-infected mouse brains has been demonstrated previously. Here, we explored whether upregulation of local hepcidin secreted within the brain is the underlying cause of iron accumulation and associated toxicity. Using scrapie-infected mouse brains, we demonstrate transcriptional upregulation of hepcidin relative to controls.
View Article and Find Full Text PDFBackground: Accumulation of iron is a consistent feature of Alzheimer's disease (AD) brains. The underlying cause, however, remains debatable.
Objective: To explore whether local hepcidin synthesized by brain cells contributes to iron accumulation in AD brains.
Age-related macular degeneration (AMD) and glaucoma are degenerative conditions of the retina and a significant cause of irreversible blindness in developed countries. Alzheimer's disease (AD), the most common dementia of the elderly, is often associated with AMD and glaucoma. The cardinal features of AD include extracellular accumulation of amyloid β (Aβ) and intracellular deposits of hyper-phosphorylated tau (p-tau).
View Article and Find Full Text PDFPurpose: Elevated levels of transforming-growth-factor (TGF)-β2 in the trabecular meshwork (TM) and aqueous humor are associated with primary open-angle glaucoma (POAG). The underlying mechanism includes alteration of extracellular matrix homeostasis through Smad-dependent and independent signaling. Smad4, an essential co-Smad, upregulates hepcidin, the master regulator of iron homeostasis.
View Article and Find Full Text PDFPurpose: The avascular cornea, trabecular meshwork (TM), and lens obtain iron, an essential biometal, from the aqueous humor (AH). The mechanism by which this exchange is regulated, however, is unclear. Recently we reported that non-pigmented ciliary epithelial cells express ferroportin (Fpn) (Ashok, 2018b), an iron export protein modulated by hepcidin, the master regulator of iron homeostasis secreted mainly by the liver.
View Article and Find Full Text PDF