We present the first full-field optical coherence tomography (FFOCT) device capable of imaging of the human cornea. We obtained images of the epithelial structures, Bowman's layer, sub-basal nerve plexus (SNP), anterior and posterior stromal keratocytes, stromal nerves, Descemet's membrane and endothelial cells with visible nuclei. Images were acquired with a high lateral resolution of 1.
View Article and Find Full Text PDFBy analyzing profiles of experimental x-ray spectral lines of Si XIV and Al XIII, we found that both Langmuir and ion acoustic waves developed in plasmas produced via irradiation of thin Si foils by relativistic laser pulses (intensities ~10 W/cm). We prove that these waves are due to the parametric decay instability (PDI). This is the first time that the PDI-induced ion acoustic turbulence was discovered by the x-ray spectroscopy in laser-produced plasmas.
View Article and Find Full Text PDFThe development of multimodal strategies for the treatment of hepatocellular carcinoma requires tractable animal models allowing for advanced in vivo imaging. Here, we characterize an orthotopic hepatocellular carcinoma model based on the injection of luciferase-expressing human hepatoma Huh-7 (Huh-7-Luc) cells in immunodeficient mice. Luciferase allows for an easy repeated monitoring of tumor growth by in vivo bioluminescence.
View Article and Find Full Text PDFObjectives: To evaluate the diagnostic accuracy (Acc) of full-field optical coherence tomography (FFOCT) for cancer detection on prostate biopsy.
Materials And Methods: Thirty-eight consecutive patients with elevated PSA and/or suspicious digital rectal examination were prospectively included. For each patient, 1-10 cores were randomly selected and imaged with FFOCT immediately after sampling.
Technol Cancer Res Treat
April 2016
Current techniques for the intraoperative analysis of sentinel lymph nodes during breast cancer surgery present drawbacks such as time and tissue consumption. Full-field optical coherence tomography is a novel noninvasive, high-resolution, fast imaging technique. This study investigated the use of full-field optical coherence tomography as an alternative technique for the intraoperative analysis of sentinel lymph nodes.
View Article and Find Full Text PDFBackground: Rapid on-site evaluation of cytologic specimens is a way of determining the adequacy of fine-needle aspiration (FNA). However, alternatives may be useful when the presence of a cytotechnologist and/or pathologist is not possible.
Objective: To evaluate the feasibility of using full-field optical coherence tomography (FFOCT) for FNA specimen quality assessment.
Objectives: To evaluate the value of full field optical coherence tomography (FFOCT) for cancer detection on prostate biopsies
Patients And Methods: Eight consecutive patients who underwent prostate biopsies for an elevated PSA or suspicious DRE findings were included in the study. For each patient, one to three biopsy cores were imaged with FFOCT immediately after sampling. Images obtained were analyzed by a pathologist blinded to the pathological results, and classified into three categories: non-cancerous tissue, suspicion of malignancy and prostate carcinoma.
We present a benchmark pilot study in which high-resolution Full-Field Optical Coherence Tomography (FF-OCT) was used to image human breast tissue and is evaluated to assess its ability to aid the pathologist's management of intra-operative diagnoses. FF-OCT imaging safety was investigated and agreement between FF-OCT and routinely prepared histopathological images was evaluated. The compact setup used for this study provides 1 mm3 resolution and 200 mm imaging depth, and a 2.
View Article and Find Full Text PDFBackground/aims: Full-field optical coherence tomography (FFOCT) is a new imaging technology that can provide 3D micron-level resolution and is suited for high-resolution imaging of biological tissue. The aim of this study was to evaluate its capacity and potential for imaging human epidermis and dermis and various skin pathologies in ex vivo and in vivo conditions.
Methods: Non-fixed and fixed samples of normal and pathological skin and normal in vivo skin were imaged with a FFOCT system and compared to histological slides.
An adaptive optics vision simulator was used to measure the role of ocular aberrations in the photopic foveal spatial summation curve for three young subjects. After the correction of the ocular aberrations over a 6 mm pupil, the increment luminance threshold was lowered for small stimuli and the estimated area of complete summation (Ricco's area) was reduced by a factor of 2.6 on average.
View Article and Find Full Text PDFBased on standard procedures used in optometry clinics, we compare measurements of visual acuity for 10 subjects (11 eyes tested) in the presence of natural ocular aberrations and different degrees of induced defocus, with the predictions given by a Bayesian model customized with aberrometric data of the eye. The absolute predictions of the model, without any adjustment, show good agreement with the experimental data, in terms of correlation and absolute error. The efficiency of the model is discussed in comparison with image quality metrics and other customized visual process models.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2009
The formalism for the calculation of Stark line profiles in hot dense plasmas submitted to a strong oscillating field is extensively developed. The Liouville space, usually used to deal with the calculation of Stark profiles in dense plasmas, and the Floquet theory, developed to solve time-periodic problems, have been joined together to solve the time-dependent Liouville equation in the so-called Floquet-Liouville formalism. The strong-oscillating-field spectroscopic signatures and their error estimations are discussed for hydrogen- and heliumlike aluminum lines.
View Article and Find Full Text PDFThe main applications of adaptive optics are the correction of the effects of atmospheric turbulence on ground-based telescopes and the correction of ocular aberrations in retinal imaging and visual simulation. The requirements for the wavefront corrector, usually a deformable mirror, will depend on the statistics of the aberrations to be corrected; here we compare the spatial statistics of wavefront aberrations expected in these two applications. We also use measured influence functions and numerical simulations to compare the performance of eight commercially available deformable mirrors for these tasks.
View Article and Find Full Text PDFThe double-pass intensity point-spread function was recorded in four subjects using a monochromatic source emitting at 543 nm, through a 6.7-mm diameter pupil i) at the fovea after adaptive optics correction of the ocular aberrations, ii) at the fovea without adaptive optics correction, and iii) at 2 degrees of eccentricity with adaptive optics correction. The half-width at half-maximum of the double-pass point-spread function was narrower after correction of the ocular aberrations.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2008
Customized optical filtering and light-dependent neural filtering were implemented in an ideal-observer model for an L-alternative forced-choice visual task. The model was applied to a contrast threshold visual task with adaptive optics correction of ocular higher-order (HO) aberrations under different light regimes, for which experimental data have previously been obtained (J. Mod.
View Article and Find Full Text PDFWe have evaluated the ability of three commercially available deformable mirrors to compensate the aberrations of the eye using a model for aberrations developed by Thibos, Bradley and Hong. The mirrors evaluated were a 37 actuator membrane mirror and 19 actuator piezo mirror (OKO Technologies) and a 35 actuator bimorph mirror (AOptix Inc). For each mirror, Zernike polynomials and typical ocular aberrated wavefronts were fitted with the mirror modes measured using a Twyman-Green interferometer.
View Article and Find Full Text PDF