Publications by authors named "Dalila Iannotta"

Extracellular vesicles (EVs) are biological nanoparticles that promote intercellular communication by delivering bioactive cargo over short and long distances. Short-distance communication takes place in the interstitium, whereas long-distance communication is thought to require transport through the blood circulation to reach distal sites. Extracellular vesicle therapeutics are frequently injected systemically, and diagnostic approaches often rely on the detection of organ-derived EVs in the blood.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are nanosized biomolecular packages involved in intercellular communication. EVs are released by all cells, making them broadly applicable as therapeutic, diagnostic, and mechanistic components in (patho)physiology. Sample purity is critical for correctly attributing observed effects to EVs and for maximizing therapeutic and diagnostic performance.

View Article and Find Full Text PDF

Undergraduate laboratory course components often provide training in various techniques without connections to an interlinked real-world scenario. This article emphasizes the benefits of longitudinal integration of research techniques to enhance learning and emphasize societal relevance. An example of a biomedical engineering challenge involving a new pandemic is described.

View Article and Find Full Text PDF

The variable presence of contaminants in extracellular vesicle (EV) samples is one of the major contributors to a lack of inter-study reproducibility in the field. Well-known contaminants include protein aggregates, RNA-protein complexes and lipoproteins, which resemble EVs in shape, size and/or density. On the contrary, polysaccharides, such as hyaluronic acid (HA), have been overlooked as EV contaminants.

View Article and Find Full Text PDF

Recent studies have revealed that cancer cell-derived extracellular vesicles (EVs) modulate immunological responses. Lipids have diverse biological functions, and are known to promote tumor malignancy. However, the immunoevasive roles of EV lipids in cancer progression remain poorly understood.

View Article and Find Full Text PDF

Over the past decades, there has been an exponential increase in the development of preclinical and clinical nanodelivery systems, and recently, an accelerating demand to deliver RNA and protein-based therapeutics. Organ-specific vasculature provides a promising intermediary for site-specific delivery of nanoparticles and extracellular vesicles to interstitial cells. Endothelial cells express organ-specific surface marker repertoires that can be used for targeted delivery.

View Article and Find Full Text PDF

cell-based characterization methods of nanoparticles are generally static and require the use of secondary analysis techniques and labeling agents. In this study, bare niosomes and chitosan-coated niosomes (chitosomes) and their interactions with intestinal cells are studied under dynamic conditions and without fluorescent probes, using surface plasmon resonance (SPR)-based cell sensing. Niosomes and chitosomes were synthesized by using Tween 20 and cholesterol in a 15 mM:15 mM ratio and then characterized by dynamic light scattering (DLS).

View Article and Find Full Text PDF

With an exponential increase in extracellular vesicle (EV) studies in the past decade, focus has been placed on standardization of experimental design to ensure inter-study comparisons and validity of conclusions. In the case of in vitro assays, the composition of cell culture media is important to consider for EV studies. In particular, levels of lipoproteins, which are critical components of the interstitial fluid, should be taken into consideration.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are cell-released nanoparticles that transfer biomolecular content between cells. Among EV-associated biomolecules, microRNAs (miRNAs/miRs) represent one of the most important modulators of signaling pathways in recipient cells. Previous studies have shown that EVs from adipose-derived mesenchymal stromal cells (MSCs) and adipose tissue modulate inflammatory pathways in macrophages.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are cell-released lipid-bilayer nanoparticles that contain biologically active cargo involved in physiological and pathological intercellular communication. In recent years, the therapeutic potential of EVs has been explored in various disease models. In particular, mesenchymal stromal cell-derived EVs have been shown to exert anti-inflammatory, anti-oxidant, anti-apoptotic, and pro-angiogenic properties in cardiovascular, metabolic and orthopedic conditions.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) mediate intercellular transport of biomolecular cargo in the body, making them promising delivery vehicles for bioactive compounds. Genetic engineering of producer cells has enabled encapsulation of therapeutic proteins in EVs. However, genetic engineering approaches can be expensive, time-consuming, and incompatible with certain EV sources, such as human plasma and bovine milk.

View Article and Find Full Text PDF

Clinical responses and tolerability of conventional nanocarriers (NCs) are sometimes different from those expected in anticancer therapy. Thus, new smart drug delivery systems (DDSs) with stimuli-responsive properties and novel materials have been developed. Several clinical trials demonstrated that these DDSs have better clinical therapeutic efficacy in the treatment of many cancers than free drugs.

View Article and Find Full Text PDF

Glycyrrhiza glabra L. is a native plant of Central and South-Western Asia that is also diffused in the Mediterranean area and contains several bioactive compounds such as: flavonoids, sterols, triterpene and saponins. Glycyrrhizin, containing glycyrrhizic and glycyrrhizinic acids has anti-inflammatory and antiallergic effects that are similar to corticosteroids.

View Article and Find Full Text PDF

Energy homeostasis is crucial for cell fate, since all cellular activities are strongly dependent on the balance between catabolic and anabolic pathways. In particular, the modulation of metabolic and energetic pathways in cancer cells has been discussed in some reports, but subsequently has been neglected for a long time. Meanwhile, over the past 20 years, a recovery of the study regarding cancer metabolism has led to an increasing consideration of metabolic alterations in tumors.

View Article and Find Full Text PDF

Chemotherapy-induced peripheral neuropathy (CIPN) is a widespread and potentially disabling side effect of various anticancer drugs. In spite of the intensive research focused on obtaining therapies capable to treat or prevent CIPN, the medical demand remains very high. Microtubule-stabilizing agents, among which taxanes, are effective chemotherapeutic agents for the therapy of several oncologic diseases.

View Article and Find Full Text PDF

Peroxisome proliferator activated receptors (PPARs) are a class of ligand-activated transcription factors, belonging to the superfamily of receptors for steroid and thyroid hormones, retinoids, and vitamin D. PPARs control the expression of several genes connected with carbohydrate and lipid metabolism, and it has been demonstrated that PPARs play important roles in determining neural stem cell (NSC) fate. Lipogenesis and aerobic glycolysis support the rapid proliferation during neurogenesis, and specific roles for PPARs in the control of different phases of neurogenesis have been demonstrated.

View Article and Find Full Text PDF