Feature selection techniques are considered one of the most important preprocessing steps, which has the most significant influence on the performance of data analysis and decision making. These FS techniques aim to achieve several objectives (such as reducing classification error and minimizing the number of features) at the same time to increase the classification rate. FS based on Metaheuristic (MH) is considered one of the most promising techniques to improve the classification process.
View Article and Find Full Text PDFWith the widespread use of intelligent information systems, a massive amount of data with lots of irrelevant, noisy, and redundant features are collected; moreover, many features should be handled. Therefore, introducing an efficient feature selection (FS) approach becomes a challenging aim. In the recent decade, various artificial methods and swarm models inspired by biological and social systems have been proposed to solve different problems, including FS.
View Article and Find Full Text PDFMedical imaging techniques play a critical role in diagnosing diseases and patient healthcare. They help in treatment, diagnosis, and early detection. Image segmentation is one of the most important steps in processing medical images, and it has been widely used in many applications.
View Article and Find Full Text PDFClassification of COVID-19 X-ray images to determine the patient's health condition is a critical issue these days since X-ray images provide more information about the patient's lung status. To determine the COVID-19 case from other normal and abnormal cases, this work proposes an alternative method that extracted the informative features from X-ray images, leveraging on a new feature selection method to determine the relevant features. As such, an enhanced cuckoo search optimization algorithm (CS) is proposed using fractional-order calculus (FO) and four different heavy-tailed distributions in place of the Lévy flight to strengthen the algorithm performance during dealing with COVID-19 multi-class classification optimization task.
View Article and Find Full Text PDFIn this study, we propose an improved version of the adaptive neuro-fuzzy inference system (ANFIS) for forecasting the air quality index in Wuhan City, China. We propose a hybrid optimization method to improve ANFIS performance, called PSOSMA, using a new modified meta-heuristics (MH) algorithm, Slime mould algorithm (SMA), which is improved by using the particle swarm optimizer (PSO). The proposed PSOSMA-ANFIS has been trained with air quality index time series data of three years and has been applied to forecast the fine particulate matter (PM2.
View Article and Find Full Text PDFCurrently, we witness the severe spread of the pandemic of the new Corona virus, COVID-19, which causes dangerous symptoms to humans and animals, its complications may lead to death. Although convolutional neural networks (CNNs) is considered the current state-of-the-art image classification technique, it needs massive computational cost for deployment and training. In this paper, we propose an improved hybrid classification approach for COVID-19 images by combining the strengths of CNNs (using a powerful architecture called Inception) to extract features and a swarm-based feature selection algorithm (Marine Predators Algorithm) to select the most relevant features.
View Article and Find Full Text PDF