Eukaryotic translation initiation factor 2B is a major housekeeping complex that governs the rate of global protein synthesis under normal and stress conditions. Mutations in any of its five subunits lead to leucoencephalopathy with vanishing white matter, an inherited chronic-progressive fatal brain disease with unknown aetiology, which is among the most prevalent childhood white matter disorders. We generated the first animal model for the disease by introducing a point mutation into the mouse Eif2b5 gene locus, leading to R132H replacement corresponding to the clinically significant human R136H mutation in the catalytic subunit.
View Article and Find Full Text PDFDuring 5'-cap-dependent translation, methylated 5'-cap and 3'-poly(A) tail work synergistically in a poly(A) binding protein (PABP)-dependent manner to facilitate translation via promoting the formation of a closed mRNA loop. On the other hand, during internal translation initiation, the requirement for and the roles of 3'-poly(A) tail and PABP vary depending on specific characteristics of each internal ribosomal entry site (IRES). In this study, we analyzed the effect of 3'-poly(A) tail and phylogenetically divergent PABPs on a polypurine tract-containing IRES element derived from the coat protein gene of crucifer-infecting tobamovirus (CrTMV IRES(CP)).
View Article and Find Full Text PDFBackground: Mutations in eukaryotic translation initiation factor 2B (eIF2B) cause Childhood Ataxia with CNS Hypomyelination (CACH), also known as Vanishing White Matter disease (VWM). The disease is manifested by loss of brain myelin upon physiological stress. In a previous study, we showed that fibroblasts isolated from CACH/VWM patients are hypersensitive to pharmacologically-induced endoplasmic reticulum (ER) stress.
View Article and Find Full Text PDFThe anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that mediates the proteolysis of cell cycle proteins in mitosis and G(1). We used a yeast three-hybrid screen to identify proteins that interact with the internal ribosome entry site (IRES) of platelet-derived growth factor 2 mRNA. Surprisingly, this screen identified Apc5, although it does not harbor a classical RNA binding domain.
View Article and Find Full Text PDF