Pulmonary delivery of drug nanocarriers can overcome the shortcomings of systemic cancer therapy via the enhanced permeability and retention (EPR) based-nanomedicine. Herein, inhalable multi-compartmental nanocomposites with the capability for both localized and modulated release of the hydrophobic mTOR inhibitor, rapamycin (RAP) and the hydrophilic herbal drug, berberine (BER) have been developed for lung cancer therapy. Two types of multi-compartmental nanocarriers were fabricated by enveloping BER hydrophobic ion pair-lipid nanocore within a shell of RAP-phospholipid complex bilayer to reduce the delivery gap between the two drugs.
View Article and Find Full Text PDFThe self-tumor targeting polymers, lactoferrin (LF) and hyaluronic acid (HA) were utilized to develop layer-by-layer (LbL) lipid nanoparticles (NPs) for dual delivery of berberine (BER) and rapamycin (RAP) to lung cancer. To control its release from the NPs, BER was hydrophobically ion paired with SLS prior to incorporation into NPs. Spherical HA/LF-LbL-RAP-BER/SLS-NPs 250.
View Article and Find Full Text PDFThere is progressive evolution in the use of inhalable drug delivery systems (DDSs) for lung cancer therapy. The inhalation route offers many advantages, being non-invasive method of drug administration as well as localized delivery of anti-cancer drugs to tumor tissue. This article reviews various inhalable colloidal systems studied for tumor-targeted drug delivery including polymeric, lipid, hybrid and inorganic nanocarriers.
View Article and Find Full Text PDF