Obtaining a clear view of the cells of interest in diagnostic cytology can be challenging when specimens are contaminated with blood or other obscuring cells. In this study, we present a powerful technique for the selective capture of diagnostic epithelial cells directly on a microscope slide, highlighting its applications in urine cytology and immunocytochemistry (ICC). Using phage-display biopanning, we identified and synthesized a series of peptides that bind with high affinity to urothelial cells but not blood cells.
View Article and Find Full Text PDFThe pharmacological activity of different nuclear receptor ligands is reflected by their impact on receptor structure. Thus, we asked whether differential presentation of protein-protein interaction surfaces on the androgen receptor (AR), a surrogate assay of receptor conformation, could be used in a prospective manner to define the pharmacological activity of bound ligands. To this end, we identified over 150 proteins/polypeptides whose ability to interact with AR is influenced in a differential manner by ligand binding.
View Article and Find Full Text PDFThe full-length human androgen receptor with an N-terminal biotin acceptor peptide tag was overexpressed in Spodoptera frugiperda cells in the presence of 1 microM dihydrotestosterone. Site-specific biotinylation of BAP was achieved in vivo by co-expression of E. coli biotin holoenzyme synthetase.
View Article and Find Full Text PDFVertebrate members of the nuclear receptor NR5A subfamily, which includes steroidogenic factor 1 (SF-1) and liver receptor homolog 1 (LRH-1), regulate crucial aspects of development, endocrine homeostasis, and metabolism. Mouse LRH-1 is believed to be a ligand-independent transcription factor with a large and empty hydrophobic pocket. Here we present structural and biochemical data for three other NR5A members-mouse and human SF-1 and human LRH-1-which reveal that these receptors bind phosphatidyl inositol second messengers and that ligand binding is required for maximal activity.
View Article and Find Full Text PDFThe nuclear receptor Steroidogenic Factor 1 (SF1) plays a critical role in the development of the adrenal gland and gonads, and in sexual differentiation. SF1 performs this pivotal function through the regulation of hormone expression that is essential for organogenesis and endocrine homeostasis. SF1 is a member of a nuclear receptor subclass that contains LRH1 and the Drosophila receptor FTZ-F1.
View Article and Find Full Text PDF