In vitro plant tissue cultures face various unfavorable conditions, such as mechanical damage, osmotic shock, and phytohormone imbalance, which can be detrimental to culture viability, growth efficiency, and genetic stability. Recent studies have revealed a presence of diverse endophytic bacteria, suggesting that engineering of the endophytic microbiome of in vitro plant tissues has the potential to improve their acclimatization and growth. Therefore, the aim of this study was to identify cultivated tobacco ( L.
View Article and Find Full Text PDFThe heavy blooming of apple trees results in the inefficient usage of energy and nutritional material, and additional expenditure on fruitlet thinning is required to maintain fruit quality. A possible solution for controlling the fruit load on trees is the development of new cultivars that self-eliminate excess fruitlets, thus controlling yield. The aim of our study was to identify biological differences in apple cultivars in terms of blooming intensity and fruitlet load self-regulation.
View Article and Find Full Text PDFAs the interest in heirloom cultivars of apple trees, their fruit, and processed products is growing worldwide, studies of the qualitative and quantitative composition of biological compounds are important for the evaluation of the quality and nutritional properties of the apples. Studies on the variations in the chemical composition of phenolic compounds characterized by a versatile biological effect are important when researching the genetic heritage of the heirloom cultivars in order to increase the cultivation of such cultivars in orchards. A variation in the qualitative and quantitative composition of phenolic compounds was found in apple samples of cultivars included in the Lithuanian collection of genetic resources.
View Article and Find Full Text PDFCold atmospheric pressure (CP) plasma irradiation of seeds has been shown to promote plant growth, but the molecular basis of this phenomenon is poorly understood. In our study, optimum irradiation of common sunflower seeds using a dielectric barrier discharge CP device stimulated growth of sunflower lateral organs and roots by 9-14% compared to the control. Metagenomic analysis revealed that the structure of plant-associated bacterial assembly was greatly modified upon CP treatment and could be attributed to the antimicrobial effect of CP-generated reactive species.
View Article and Find Full Text PDF