Bacterial pigments are the wonder molecules of nature that have attracted the attention of industries in recent years. To date, various synthetic pigments have been in use in food, cosmetics, and textile industries that have not only shown a notoriously toxic nature but also posed threat to the ecosystem. Moreover, nutraceuticals, fisheries, and animal husbandry were highly dependent on plant sources for products that aid in disease prevention and improve stock health.
View Article and Find Full Text PDFApart from protecting the environment from undesired waste impacts, wastewater treatment is a crucial platform for recovery. The exploitation of suitable technology to transform the wastes from pulp and paper industries (PPI) to value-added products is vital from an environmental and socio-economic point of view that will impact everyday life. As the volume and complexity of wastewater increase in a rapidly urbanizing world, the challenge of maintaining efficient wastewater treatment in a cost-effective and environmentally friendly manner must be met.
View Article and Find Full Text PDFThe present study has been designed to utilize industrial and agricultural solid waste for NPK (Nitrogen-Phosphorus-Potassium) bio-organic fertilizer production and its optimized use. The collagenic material of wet blue leather (WBL) from leather industry was used as nitrogen source, after HPO acid-mediated chromium removal. Chicken meat-bone meal (CMBM) and rice husk ash (RHA) are abundantly available locally, had used as P, K, and Ca sources.
View Article and Find Full Text PDFProdigiosin, a red bacterial pigment is a compound with promising therapeutic properties. Major hindrance in applying prodigiosin in pharmaceutics is the insolubility in water and lack of bioavailability. This study aims to optimize two different types of chitosan based delivery systems, microspheres and nanoparticles for prodigiosin derived from Serratia marcescens NITDPER1 through Taguchi method and determine toxicity perspectives.
View Article and Find Full Text PDFβ-carotene is a natural compound with immense healthcare benefits. To overcome insolubility and lack of stability which restricts its application, in this study, β-carotene from Planococcus sp. TRC1 was entrapped into formulations of chitosan‑sodium alginate microspheres (MF1, MF2 and MF3) and chitosan nanoparticles (NF1, NF2 and NF3).
View Article and Find Full Text PDFChlorophenols are not only noticed in an effluvium of industries but also can emerge from the water treatment plants for domestic supply which poses a high threat for crop production and human health. Therefore, research on their risks to ecosystem and human health via ecotoxicological tests to derivate permissible environmental contaminant concentrations is necessary. The chlorophenols produced in the course of chlorination of potable water is an outcome of natural carboxylic acids/organic material and those chlorophenols occurred as emerging disinfection byproducts (EDBPs).
View Article and Find Full Text PDFAn attempt has been made to address two important issues, the solid waste management of leather industry and soil fertility. The SEM images revealed altered surface-morphology.The EDS elemental analysis exhibited presence of about 13.
View Article and Find Full Text PDFChlorination is important to the safeness of recouped water; though it shows concern about disinfection by-products (DBPs) formation and its toxic effects. DBPs generation mostly specified by category of disinfectant utilized and naturally occurring organic matter present in the water pre and post disinfection. Plants are exposed to diverse stresses of environment across their lifespan.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2019
The organic toxicants formed in chlorinated water cause potential harm to human beings, and it is extensively concentrated all over the world. Various disinfection by-products (DBPs) occur in chlorinated water are genotoxic and carcinogenic. The toxicity is major concern for chlorinated DBPs which has been present more in potable water.
View Article and Find Full Text PDFThe aim of this study was to investigate pharmaceutical potentialities of a polymeric microparticulate drug delivery system for modulating the drug profile of poorly water-soluble quercetin. In this research work two cost effective polymers sodium alginate and chitosan were used for entrapping the model drug quercetin through ionic cross linking method. In vitro drug release, swelling index, drug entrapment efficiency, Fourier Transforms Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Differential Scanning Calorimetric (DSC) studies were also done for physicochemical characterization of the formulations.
View Article and Find Full Text PDF