Publications by authors named "Dali Wei"

Cuproptosis, a recently identified form of copper-dependent cell death, shows promising tumor suppressive effects with minimal drug resistance. However, its therapeutic efficacy is hampered by its dependence on copper ions and the glutathione (GSH)-rich microenvironment in tumors. Here, we have developed polyvalent aptamer nanodrug conjugates (termed CuPEs@PApt) with a nucleosome-like structure to improve tumor cuproptosis therapy by exploiting mitochondrial copper overload and GSH depletion.

View Article and Find Full Text PDF

Extensive applications of bisphenols in industrial products have led to their release into aquatic environments, causing a great threat to human health due to their endocrine-disrupting effects, whereas existing methods are difficult to implement the rapid and high-throughput detection of multiple bisphenols. To circumvent this issue, we constructed a sensor array using two luminescent metal-organic frameworks (LMOFs) (Zr-BUT-12 and Ga-MIL-61) for the rapid discrimination of six bisphenol contaminants (BPA, BPS, BPB, BPF, BPAF, and TBBPA). Wherein, Zr-BUT-12 and Ga-MIL-61 exhibited different fluorescence-emission properties and good luminescent stability.

View Article and Find Full Text PDF

Benefiting from easy visualization and simultaneous detection of multiple targets, fluorescence microbeads are commonly used as fluorescence-sensing elements to detect pollutants in the environment. However, the application of fluorescence microbead-based sensor arrays is still limited because fluorescence dyes always suffer from self-quenching, photobleaching, and spectral overlap. Herein, three kinds of gold nanoclusters (Au NCs) were assembled with polystyrene microspheres (PS NPs) by electrostatic interaction to prepare fluorescence microbeads (PS-Au NCs), developing a sensor array for the simultaneous analysis of multiple metal ions.

View Article and Find Full Text PDF

Surfactants are considered as typical emerging pollutants, their extensive use of in disinfectants has hugely threatened the ecosystem and human health, particularly during the pandemic of coronavirus disease-19 (COVID-19), whereas the rapid discrimination of multiple surfactants in environments is still a great challenge. Herein, we designed a fluorescent sensor array based on luminescent metal-organic frameworks (UiO-66-NH@Au NCs) for the specific discrimination of six surfactants (AOS, SDS, SDSO, MES, SDBS, and Tween-20). Wherein, UiO-66-NH@Au NCs were fabricated by integrating UiO-66-NH (2-aminoterephthalic acid-anchored-MOFs based on zirconium ions) with gold nanoclusters (Au NCs), which exhibited a dual-emission features, showing good luminescence.

View Article and Find Full Text PDF

Aptamers are single-stranded DNA or RNA molecules capable of recognizing targets via specific three-dimensional structures. Taking advantage of this unique targeting function, aptamers have been extensively applied to bioanalysis and disease theranostics. However, the targeting functionality of aptamers in the physiological milieu is greatly impeded compared with their applications.

View Article and Find Full Text PDF

A high-throughput cell-based monitoring platform was fabricated to rapidly measure the specific toxicity of unknown waters, based on AuNPs@aptamer fluorescence bioassays. The aptamer is employed in the platform for capturing the toxicity indicator, wherein hybrid chain-reaction (HCR)-induced DNA functional gold nanoparticle (AuNPs) self-assembly was carried out for signal amplification, which is essential for sensitively measuring the sub-lethal effects caused by target compounds. Moreover, the excellent stability given by the synthesized DNA nanostructure provides mild conditions for the aptamer thus used to bind the analyte.

View Article and Find Full Text PDF

The cooperation of biocatalysis and chemocatalysis in a catalytic cascade reaction has received extensive attention in recent years, whereas its practical applications are still hampered due to the fragility of the enzymes, poor compatibility between the carriers and enzymes, and limited catalytic efficiency. Herein, a biomimetic cascade nanoreactor (GOx@COFs@Os) was presented by integrating glucose oxidase (GOx) and Os nanozyme with covalent organic framework (COF) capsule using metal-organic framework (ZIF-90) as a template. The obtained GOx@COFs@Os capsule provided a capacious microenvironment to retain the conformational freedom of GOx for maintaining its activity, wherein the enzyme activity of GOx in COF capsules was equal to 92.

View Article and Find Full Text PDF

Serving as targeting ligands, aptamers have shown promise in precision medicine. However, the lack of knowledge of the biosafety and metabolism patterns in the human body largely impeded aptamers' clinical translation. To bridge this gap, here we report the first-in-human pharmacokinetics study of protein tyrosine kinase 7 targeted SGC8 aptamer via in vivo PET tracking of gallium-68 (Ga) radiolabeled aptamers.

View Article and Find Full Text PDF

The growing co-contamination of multiple metal ions seriously influences human health due to their synergistic and additive toxicological effects, whereas the rapid discrimination of multiple heavy metal ions in complex aquatic systems remains a major challenge. Herein, a high- throughput fluorescence sensor array was fabricated based on three gold nanoclusters (GSH-Au NCs, OVA-Au NCs, and BSA-Au NCs) for the direct identification and quantification of seven heavy metal ions (Pb, Fe, Cu, Co, Ag, Hg and As) from environmental waters without sample pretreatment other than filtration. At the detection system, three gold nanoclusters with various ligands possessed distinct binding capacities against metal ions and induced aggregation-induced fluorescence enhancement and quenching, resulting in a unique pattern of fluorescence variations.

View Article and Find Full Text PDF

The environmental occurrences of bisphenol analogues (BPs) have been extensively reported, whereas their concentration profile, spatial distribution, and temporal trend in e-waste dismantling area are still poorly understood. Herein, typical BPs (BPA, BPS, TBBPA, TBBPA-DHEE, and TBBPA-MHEE) were investigated in water, soil, and biological samples from three representative regions (FJT, JJP, and RIB) in e-waste recycling area in Taizhou, Zhejiang Province. Overall, the detection frequency of BPs in all samples was 100 %, confirming widespread presence of BPs in e-waste recycling area.

View Article and Find Full Text PDF

The necessary step of directly adding hydrogen peroxide (HO) into the detection system in traditional immunoassays hampers their applications as a portable device for point-of-care analysis due to the unstable liquid form of HO. Herein, a strategy of self-supplying HO and signal amplification triggering by copper peroxide nanodots encapsulated (CPNs) in metal-organic frameworks (ZIF-8) was proposed in an immunoassay for dual-signal detection of bisphenol A (a typical emerging organic pollutant), which was further fabricated as a lab-in-a-tube device integrated with a smartphone sensing platform. Herein, CPNs@ZIF-8 was modified on the antibody against bisphenol A; after the competitive binding of analytes, coating antigens, and antibodies, the released HO and Cu from encapsulated CPNs under the acidic condition will trigger a Fenton-like reaction to generate ·OH for oxidization of TMB; meanwhile, Cu could quench the fluorescence of GSH-Au NCs, resulting in dual-mode signals for measurements.

View Article and Find Full Text PDF

Gold nanoclusters (Au NCs) with luminescence property are emerging as promising candidates in fluorescent methods for monitoring contaminants, but low luminescence efficiency hampers their extensive applications. Herein, GSH-Au NCs@ZIF-8 was designed by encapsulating GSH-Au NCs with AIE effect into metal-organic frameworks, achieving high luminescence efficiency and good stability through the confinement effect of ZIF-8. Accordingly, a fluorescent sensing platform was constructed for the sensitive detection of copper ions (Cu) and organophosphorus pesticides (OPs).

View Article and Find Full Text PDF

Background: Recurrent urinary tract infection (RUTI) is common and burdensome in women. Due to the low concentration or slow-growing of uropathogens in RUTI, standard urine cultures (SUCs) are often negative. Next-generation sequencing (NGS) of bacterial 16S rRNA gene is more sensitive and could be used to reveal the differential microbiota between patients with RUTI and asymptomatic controls.

View Article and Find Full Text PDF

Herein, a portable lab-in-a-syringe device integrated with a smartphone sensing platform was designed for rapid, visual quantitative determination of organophosphorus pesticides (OPs) via colorimetric and fluorescent signals. The device was chiefly made up of a conjugate pad labeled with cetyltrimethylammonium bromide-coated gold nanoparticles (CTAB-Au NPs) and a sensing pad modified by ratiometric probes (red-emission quantum dots@SiO nanoparticles@green-emission quantum dots, rQDs@SiO@gQDs probe), which was assembled through a disposable syringe and reusable plastic filter. In the detection system, thiocholine (Tch), the hydrolysis product of thioacetylcholine (ATch) by acetylcholinesterase (AchE), could trigger the aggregation of CTAB-Au NPs, resulting in a significant color change from red to purple.

View Article and Find Full Text PDF

Because of the advantages of simplicity, cost-effectiveness and visibility, lateral-flow immunoassays (LFAs) have been widely used in the food safety field. However, the low sensitivity of LFAs needs to be solved. Nanozymes have amazing potential for application in biosensors due to their excellent and abundant enzyme-like characteristics.

View Article and Find Full Text PDF

We report here a supercatalyst for oxygen reduction of Pt/CN/Ni in a unique ternary heterostructure, in which the Pt and the underlying Ni nanoparticles are separated by two to three layers of nitrogen-doped carbon (CN), which mediates the transfer of electrons from the inner Ni to the outer Pt and protects the Ni against corrosion at the same time. The well-engineered low-Pt catalyst shows ∼780% enhanced specific mass activity or 490% enhanced specific surface activity compared with a commercial Pt/C catalyst toward oxygen reduction. More importantly, the exceptionally strong tune on the Pt by the unique structure makes the catalyst superbly stable, and its mass activity of 0.

View Article and Find Full Text PDF

The development of low-cost non-precious-metal electrocatalysts with high activity and stability in the oxygen reduction reaction (ORR) remains a great challenge. Heteroatom-doped carbon materials are receiving increased attention in research as effective catalysts. However, the uncontrolled doping of heteroatoms into a carbon matrix tends to inhibit the activity of a catalyst.

View Article and Find Full Text PDF

For production of biodiesel from bio oils by heterogeneous catalysis, high performance catalysts of transesterification and the further utilization of glycerol have been the two points of research. The process seemed easy, however, has never been well established. Here we report a novel design of catalytic distillation using hierachically integrated CNTs-based holistic catalyst to figure out the two points in one process, which shows high performance both for the conversion of bio oils to biodiesel and, unexpectedly, for the conversion of glycerol to more valuable chemicals at the same time.

View Article and Find Full Text PDF