In comparison with sensible heat storage devices, phase change thermal storage devices have advantages such as high heat storage density, low heat dissipation loss, and good cyclic performance, which have great potential for solving the problem of temporal and spatial imbalances in the transfer and utilization of heat energy. However, there are also issues such as the small thermal conductivity of phase change materials (PCMs) and poor efficiency in heat storage and release, and in recent years, enhanced heat transfer in phase change thermal storage devices has become one of the research hotspots for optimizing thermal storage devices. Although there have been reviews of enhanced heat transfer technology for phase change thermal storage devices in the literature, there is still insufficient research on the summarization of the enhanced heat transfer mechanism, structural optimization, and applications of phase change thermal storage devices.
View Article and Find Full Text PDFPulmonary fibrosis (PF) is a progressive and fatal interstitial lung disease with limited therapeutic options at present, and epithelial-mesenchymal transition (EMT) is recognized as a major cause of lung fibrosis. Our previous work has confirmed that total extract of Anemarrhena asphodeloides Bunge [Asparagaceae] exerted the effect of anti-PF. As a main constituent of Anemarrhena asphodeloides Bunge [Asparagaceae], the effect of timosaponin BII (TS BII) on drug-induced EMT process in PF animals and alveolar epithelial cells remains unknown.
View Article and Find Full Text PDFPulmonary fibrosis is a progressive interstitial lung disease with poor prognosis. Anemarrhenae Rhizoma is a traditional Chinese herbal medicine and has been applied in clinical practice for a long history. Recently, components of Anemarrhenae Rhizoma were reported to possess anti-inflammatory and immunomodulatory features; however, the effect of them on pulmonary fibrosis remains unknown.
View Article and Find Full Text PDFTheor Biol Med Model
October 2018
Background: Embryo transfer (ET) is a key step of assisted reproductive procedures, where the transferred medium containing the embryos is injected into the uterine cavity through a transcervical catheter and blended with intrauterine fluid in the uterine cavity. This procedure determines the delivery sites of embryos in the uterine cavity and has crucial impact on the implantation. Due to practical restrictions and ethical issues, it is often difficult to perform an in vivo study in humans to examine factors that affect the motions and delivery of embryos during ET.
View Article and Find Full Text PDF