We consider a novel class of semiparametric joint models for multivariate longitudinal and survival data with dependent censoring. In these models, unknown-fashion cumulative baseline hazard functions are fitted by a novel class of penalized-splines (P-splines) with linear constraints. The dependence between the failure time of interest and censoring time is accommodated by a normal transformation model, where both nonparametric marginal survival function and censoring function are transformed to standard normal random variables with bivariate normal joint distribution.
View Article and Find Full Text PDFThis paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results.
View Article and Find Full Text PDFA robust version of residual maximum likelihood estimation for Poisson log-linear mixed model is developed, and the method is extended to k-component Poisson mixture with random effects. The method not only provides the robust estimators for the fixed effects and variance component parameters but also gives the robust prediction of random effects. Simulation results show that the proposed method is effective in limiting the impact of outliers under different data contamination schemes.
View Article and Find Full Text PDF