Publications by authors named "Dale Shumaker"

Healthy children are more likely to die of influenza A virus (IAV) infection than healthy adults. However, little is known about the mechanisms underlying the impact of young age on the development of life-threatening IAV infection. We report increased mortality in juvenile mice compared with adult mice at each infectious dose of IAV.

View Article and Find Full Text PDF

Influenza A virus (IAV) is a significant cause of life-threatening lower respiratory tract infections in children. Antiviral therapy is the mainstay of treatment, but its effectiveness in this age group has been questioned. In addition, damage inflicted on the lungs by the immune response to the virus may be as important to the development of severe lung injury during IAV infection as the cytotoxic effects of the virus itself.

View Article and Find Full Text PDF

The type III intermediate filament protein vimentin was once thought to function mainly as a static structural protein in the cytoskeleton of cells of mesenchymal origin. Now, however, vimentin is known to form a dynamic, flexible network that plays an important role in a number of signaling pathways. Here, we describe various methods that have been developed to investigate the cellular functions of the vimentin protein and intermediate filament network, including chemical disruption, photoactivation and photoconversion, biolayer interferometry, soluble bead binding assay, three-dimensional substrate experiments, collagen gel contraction, optical-tweezer active microrheology, and force spectrum microscopy.

View Article and Find Full Text PDF

Activation of the NLRP3 inflammasome and subsequent maturation of IL-1β have been implicated in acute lung injury (ALI), resulting in inflammation and fibrosis. We investigated the role of vimentin, a type III intermediate filament, in this process using three well-characterized murine models of ALI known to require NLRP3 inflammasome activation. We demonstrate that central pathophysiologic events in ALI (inflammation, IL-1β levels, endothelial and alveolar epithelial barrier permeability, remodelling and fibrosis) are attenuated in the lungs of Vim(-/-) mice challenged with LPS, bleomycin and asbestos.

View Article and Find Full Text PDF

There is an accumulation of evidence in the literature demonstrating the integral role of vimentin intermediate filaments (IFs) in the progression of lung cancers. Vimentin IF proteins have been implicated in many aspects of cancer initiation and progression, including tumorigenesis, epithelial-to-mesenchymal transition (EMT), and the metastatic spread of cancer. Specifically, vimentin IFs have been recognized as an essential component regulating EMT, major signal transduction pathways involved in EMT and tumor progression, cell migration and invasion, the positioning and anchorage of organelles, such as mitochondria, and cell-cell and cell-substrate adhesion.

View Article and Find Full Text PDF

Nuclear lamin B1 (LB1) is a major structural component of the nucleus that appears to be involved in the regulation of many nuclear functions. The results of this study demonstrate that LB1 expression in WI-38 cells decreases during cellular senescence. Premature senescence induced by oncogenic Ras also decreases LB1 expression through a retinoblastoma protein (pRb)-dependent mechanism.

View Article and Find Full Text PDF

The lamins are major determinants of nuclear shape and chromatin organization and these features are frequently altered in prostate cancer (CaP). Human CaP cell lines frequently have nuclear lobulations, which are enriched in A-type lamins but lack B-type lamins and have been defined as lamin B-deficient microdomains (LDMDs). LDMD frequency is correlated with CaP cell line aggressiveness and increased cell motility.

View Article and Find Full Text PDF

The nuclear envelope (NE) is a double membrane physical barrier, which separates the nucleus from the cytoplasm. Underlying the NE are the nuclear lamins, which in combination with inner nuclear membrane proteins form the lamina. The lamina is crucial for maintaining the structural integrity of the nucleus and for positioning of nuclear pore complexes (NPCs) within the NE.

View Article and Find Full Text PDF

Vimentin intermediate filaments (VIF) extend throughout the rear and perinuclear regions of migrating fibroblasts, but only nonfilamentous vimentin particles are present in lamellipodial regions. In contrast, VIF networks extend to the entire cell periphery in serum-starved or nonmotile fibroblasts. Upon serum addition or activation of Rac1, VIF are rapidly phosphorylated at Ser-38, a p21-activated kinase phosphorylation site.

View Article and Find Full Text PDF

The nucleoporin Nup153 is known to play pivotal roles in nuclear import and export in interphase cells and as the cell transitions into mitosis, Nup153 is involved in nuclear envelope breakdown. In this study, we demonstrate that the interaction of Nup153 with the spindle assembly checkpoint protein Mad1 is important in the regulation of the spindle checkpoint. Overexpression of human Nup153 in HeLa cells leads to the appearance of multinucleated cells and induces the formation of multipolar spindles.

View Article and Find Full Text PDF

We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy that combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy, and regulate target gene expression.

View Article and Find Full Text PDF

Intermediate filament (IF) dynamics during organelle transport and their role in organelle movement were studied using Xenopus laevis melanophores. In these cells, pigment granules (melanosomes) move along microtubules and microfilaments, toward and away from the cell periphery in response to alpha-melanocyte stimulating hormone (alpha-MSH) and melatonin, respectively. In this study we show that melanophores possess a complex network of vimentin IFs which interact with melanosomes.

View Article and Find Full Text PDF

The nuclear lamins function in the regulation of replication, transcription, and epigenetic modifications of chromatin. However, the mechanisms responsible for these lamin functions are poorly understood. We demonstrate that A- and B-type lamins form separate, but interacting, stable meshworks in the lamina and have different mobilities in the nucleoplasm as determined by fluorescence correlation spectroscopy (FCS).

View Article and Find Full Text PDF

This study provides insights into the role of nuclear lamins in DNA replication. Our data demonstrate that the Ig-fold motif located in the lamin C terminus binds directly to proliferating cell nuclear antigen (PCNA), the processivity factor necessary for the chain elongation phase of DNA replication. We find that the introduction of a mutation in the Ig-fold, which alters its structure and causes human muscular dystrophy, inhibits PCNA binding.

View Article and Find Full Text PDF
Article Synopsis
  • Intermediate filament proteins, specifically types A and B nuclear lamins, play critical roles beyond structural support, being vital for normal nuclear functions.
  • Studies of mutations in the human lamin A gene have shed light on lamin-related functions, highlighting their impact on epigenetics, chromatin organization, DNA replication, transcription, and DNA repair.
  • Recent findings also indicate that lamins are important in the context of viral infections, suggesting a broader significance in cellular processes.
View Article and Find Full Text PDF

The premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS) is caused by a mutant lamin A (LADelta50). Nuclei in cells expressing LADelta50 are abnormally shaped and display a loss of heterochromatin. To determine the mechanisms responsible for the loss of heterochromatin, epigenetic marks regulating either facultative or constitutive heterochromatin were examined.

View Article and Find Full Text PDF

Mitotic spindle morphogenesis is a series of highly coordinated movements that lead to chromosome segregation and cytokinesis. We report that the intermediate filament protein lamin B, a component of the interphase nuclear lamina, functions in spindle assembly. Lamin B assembled into a matrix-like network in mitosis through a process that depended on the presence of the guanosine triphosphate-bound form of the small guanosine triphosphatase Ran.

View Article and Find Full Text PDF

The non-alpha-helical C terminus of Xenopus lamin B3 (LB3T) inhibits the polymerization of lamin B3 in vitro and prevents the assembly of nuclei in Xenopus egg interphase extracts. To more precisely define the functions of LB3T in nuclear assembly, we have expressed subdomains of LB3T and determined their effects on nuclear assembly in Xenopus extracts. The results demonstrate that the Ig-fold motif (LB3T-Ig) is sufficient to inhibit lamin polymerization in vitro.

View Article and Find Full Text PDF

How timely transport of chemical signals between the distal end of long axonal processes and the cell bodies of neurons occurs is an interesting and unresolved issue. Recently, Perlson et al. presented evidence that cleavage products of newly synthesized vimentin, an intermediate filament (IF) protein, interact with mitogen-activated protein (MAP) kinases at sites of axon injury.

View Article and Find Full Text PDF

The cell nucleus is surrounded by a complex membranous envelope which separates the nucleoplasm from the cytoplasm. Unlike the cytoplasm, the nucleoplasm is not subdivided into membrane-bound compartments, which allows for the efficient segregation of a wide range of complex metabolic activities. In the absence of such membrane compartmentalization, the nucleus is faced with the daunting task of efficiently segregating and interconnecting an enormous array of critically important functions.

View Article and Find Full Text PDF

Many nuclear proteins form lamin-dependent complexes, including LEM-domain proteins, nesprins and SUN-domain proteins. These complexes have roles in chromatin organization, gene regulation and signal transduction. Some link the nucleoskeleton to cytoskeletal structures, ensuring that the nucleus and centrosome assume appropriate intracellular positions.

View Article and Find Full Text PDF

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder, commonly caused by a point mutation in the lamin A gene that results in a protein lacking 50 aa near the C terminus, denoted LADelta50. Here we show by light and electron microscopy that HGPS is associated with significant changes in nuclear shape, including lobulation of the nuclear envelope, thickening of the nuclear lamina, loss of peripheral heterochromatin, and clustering of nuclear pores. These structural defects worsen as HGPS cells age in culture, and their severity correlates with an apparent increase in LADelta50.

View Article and Find Full Text PDF
Article Synopsis
  • The nucleoskeleton consists of structural proteins that support DNA replication, transcription, and various nuclear functions.
  • Type-V intermediate filament proteins, such as lamins and associated proteins, are crucial for these processes alongside actin and its related proteins, emphasizing their roles in chromatin remodeling and mRNA activities.
  • Recent discoveries of proteins that bind both actin and lamin may shed light on the interactions between these nucleoskeletal proteins, helping to explain the connection between genetic defects in these proteins and a growing number of human diseases.
View Article and Find Full Text PDF