One challenge on the path to delivering FLASH-compatible beams with a synchrotron is facilitating an accurate dose control for the required ultra-high dose rates. We propose the use of pulsed RFKO extraction instead of continuous beam delivery as a way to control the dose delivered per Voxel. In a first feasibility test, dose rates in pulses of up to 600 Gy swere observed, while the granularity at which the dose was delivered is expected to be well below 0.
View Article and Find Full Text PDFAustralia has taken a collaborative nationally networked approach to achieve particle therapy capability. This supports the under-construction proton therapy facility in Adelaide, other potential proton centres and an under-evaluation proposal for a hybrid carbon ion and proton centre in western Sydney. A wide-ranging overview is presented of the rationale for carbon ion radiation therapy, applying observations to the case for an Australian facility and to the clinical and research potential from such a national centre.
View Article and Find Full Text PDFBackground And Purpose: To establish the treatment indications and potential patient numbers for carbon ion radiation therapy (CIRT) at the proposed national carbon ion (and proton) therapy facility in the Westmead precinct, New South Wales (NSW), Australia.
Methods: An expert panel was convened, including representatives of four operational and two proposed international carbon ion facilities, as well as NSW-based CIRT stakeholders. They met virtually to consider CIRT available evidence and experience.
Purpose: A 5 and 10 μm thin silicon on insulator (SOI) 3D mushroom microdosimeter was used to characterize both the in-field and out-of-field of a 62 MeV proton beam.
Methods: The SOI mushroom microdosimeter consisted of an array of cylindrical sensitive volumes (SVs), developed by the Centre for Medical Radiation Physics, University of Wollongong, was irradiated with 62 MeV protons at the CATANA (Centro di AdroTerapia Applicazioni Nucleari Avanzate) facility in Catania, Italy, a facility dedicated to the radiation treatment of ocular melanomas. Dose mean lineal energy, ( ), values were obtained at various depths in PMMA along a pristine and spread out Bragg peak (SOBP).
In this paper we investigate the emission and detection characteristics of prompt gamma (PG) rays for in vivo range verification during hadron therapy, using Geant4 simulations. Proton, He and C beams of varying energy are incident on water phantoms. The PG production yield, energy spectral characteristics and spatial correlation with the Bragg Peak (BP) have been quantified.
View Article and Find Full Text PDFAn experimental and simulation-based study was performed on a 12C ion minibeam radiation therapy (MBRT) field produced with a clinical broad beam and a brass multi-slit collimator (MSC). Silicon-on-insulator (SOI) microdosimeters developed at the Centre for Medical Radiation Physics (CMRP) with micron sized sensitive volumes were used to measure the microdosimetric spectra at varying positions throughout the MBRT field and the corresponding dose-mean lineal energies and RBE for 10% cell survival (RBE10) were calculated using the modified Microdosimetric Kinetic Model (MKM). An increase in the average RBE10 of ∼30% and 10% was observed in the plateau region compared to broad beam for experimental and simulation values, respectively.
View Article and Find Full Text PDFBackground: The aim of this study was to measure the microdosimetric distributions of a carbon pencil beam scanning (PBS) and passive scattering system as well as to evaluate the relative biological effectiveness (RBE) of different ions, namely C, N, and O, using a silicon-on-insulator (SOI) microdosimeter with well-defined 3D-sensitive volumes (SV). Geant4 simulations were performed with the same experimental setup and results were compared to the experimental results for benchmarking.
Method: Two different silicon microdosimeters with rectangular parallelepiped and cylindrical shaped SVs, both 10 μm in thickness were used in this study.
Purpose: Microdosimetry is a vital tool for assessing the microscopic patterns of energy deposition by radiation, which ultimately govern biological effect. Solid-state, silicon-on-insulator microdosimeters offer an approach for making microdosimetric measurements with high spatial resolution (on the order of tens of micrometers). These high-resolution, solid-state microdosimeters may therefore play a useful role in characterizing proton radiotherapy fields, particularly for making highly resolved measurements within the Bragg peak region.
View Article and Find Full Text PDFPurpose: This work aims to characterize a proton pencil beam scanning (PBS) and passive double scattering (DS) systems as well as to measure parameters relevant to the relative biological effectiveness (RBE) of the beam using a silicon on insulator (SOI) microdosimeter with well-defined 3D sensitive volumes (SV). The dose equivalent downstream and laterally outside of a clinical PBS treatment field was assessed and compared to that of a DS beam.
Methods: A novel silicon microdosimeter with well-defined 3D SVs was used in this study.
Circular ion-implanted silicon detector of α-particles with a large, 5-cm(2), sensitive area has been developed. An advantage of the detector is that the detector surface is easily cleanable with chemicals. The hardened surface of the detector shows no signs of deterioration of the spectroscopic and electrical characteristics upon repeated cleaning.
View Article and Find Full Text PDFPurpose: Lethal cell damage by ionising radiation is generally initiated by the formation of complex strand breaks, resulting from ionisation clusters in the DNA molecule. A better understanding of the effect of the distribution of ionisation clusters within the cell and particularly in regard to DNA segments could be beneficial to radiation therapy treatment planning. Low energy X-rays generate an abundance of low energy electrons similar to that associated with MeV protons.
View Article and Find Full Text PDF