Publications by authors named "Dale Louis Nolte"

The 2009 influenza pandemic had a tremendous social and economic impact. To study the genetic diversity and evolution of the 2009 H1N1 virus, a mutation network for the non-structural (NS) gene of the virus was constructed. Strains of the 2009 H1N1 pandemic influenza A virus could be divided into two categories based on the V123I mutation in the NS1 gene: G1 (characterized as 123 Val) and G2 (characterized as 123 Ile).

View Article and Find Full Text PDF

H9N2 influenza A viruses have become endemic in different types of terrestrial poultry and wild birds in Asia, and are occasionally transmitted to humans and pigs. To evaluate the role of black-billed magpies (Pica pica) in the evolution of influenza A virus, we conducted two epidemic surveys on avian influenza viruses in wild black-billed magpies in Guangxi, China in 2005 and characterized three isolated black-billed magpie H9N2 viruses (BbM viruses). Phylogenetic analysis indicated that three BbM viruses were almost identical with 99.

View Article and Find Full Text PDF

H9N2 influenza A viruses have become established worldwide in terrestrial poultry and wild birds, and are occasionally transmitted to mammals including humans and pigs. To comprehensively elucidate the genetic and evolutionary characteristics of H9N2 influenza viruses, we performed a large-scale sequence analysis of 571 viral genomes from the NCBI Influenza Virus Resource Database, representing the spectrum of H9N2 influenza viruses isolated from 1966 to 2009. Our study provides a panoramic framework for better understanding the genesis and evolution of H9N2 influenza viruses, and for describing the history of H9N2 viruses circulating in diverse hosts.

View Article and Find Full Text PDF

Highly pathogenic H5N1 avian influenza is considered an avian disease, although there is some evidence of limited human-to-human transmission of the virus. A global effort is underway to control or eradicate the highly pathogenic H5N1 avian influenza virus in poultry and prevent human exposure, both of which may also reduce the risk of pandemic emergence. Hemagglutinin gene sequences from 215 human H5N1 influenza viruses were used to trace the source and dispersal pattern of human H5N1 influenza viruses on a global scale.

View Article and Find Full Text PDF