Several members of the Hes/Her family, conserved targets of the Notch signalling pathway, encode transcriptional repressors that dimerise, bind DNA and self-repress. Such autoinhibition of transcription can yield homeostasis and, in the presence of delays that account for processes such as transcription, splicing and transport, oscillations. Whilst previous models of autoinhibition of transcription have tended to treat processes such as translation as being unregulated (and hence linear), here we develop and explore a mathematical model that considers autoinhibition of transcription together with nonlinear regulation of translation.
View Article and Find Full Text PDFAll vertebrates share a segmented body axis. Segments form from the rostral end of the presomitic mesoderm (PSM) with a periodicity that is regulated by the segmentation clock. The segmentation clock is a molecular oscillator that exhibits dynamic clock gene expression across the PSM with a periodicity that matches somite formation.
View Article and Find Full Text PDFA striking example of coupling between growth and form occurs during the segmentation of the vertebrate embryo. During segmentation, pairs of segments, one on either side of the anterior-posterior axis, bud off from the presomitic mesoderm (PSM) at regular intervals in time. In the clock and wavefront model, a multicellular oscillator regulates the time at which the next pair of segments form whilst a wavefront regulates their spatial location.
View Article and Find Full Text PDFThe Myc transcriptional regulators are implicated in a range of cellular functions, including proliferation, cell cycle progression, metabolism and pluripotency maintenance. Here, we investigated the expression, regulation and function of the Myc family during mouse embryonic axis elongation and segmentation. Expression of both ( - Mouse Genome Informatics) and in the domains in which neuromesodermal progenitors (NMPs) and underlying caudal pre-somitic mesoderm (cPSM) cells reside is coincident with WNT and FGF signals, factors known to maintain progenitors in an undifferentiated state.
View Article and Find Full Text PDFObesity places an enormous medical and economic burden on society. The principal driver appears to be central leptin resistance with hyperleptinemia. Accordingly, a compound that reverses or prevents leptin resistance should promote weight normalisation and improve glucose homeostasis.
View Article and Find Full Text PDFDuring somitogenesis, pairs of epithelial somites form in a progressive manner, budding off from the anterior end of the pre-somitic mesoderm (PSM) with a strict species-specific periodicity. The periodicity of the process is regulated by a molecular oscillator, known as the "segmentation clock," acting in the PSM cells. This clock drives the oscillatory patterns of gene expression across the PSM in a posterior-anterior direction.
View Article and Find Full Text PDFIn the developing vertebrate embryo, segmentation initiates through the formation of repeated segments, or somites, on either side of the posterior neural tube along the anterior to posterior axis. The periodicity of somitogenesis is regulated by a molecular oscillator, the segmentation clock, driving cyclic gene expression in the unsegmented paraxial mesoderm, from which somites derive. Three signaling pathways underlie the molecular mechanism of the oscillator: Wnt, FGF, and Notch.
View Article and Find Full Text PDFSomitogenesis is regulated by a molecular oscillator that drives dynamic gene expression within the pre-somitic mesoderm. Previous mathematical models of the somitogenesis clock that invoke the mechanism of delayed negative feedback predict that its oscillation period depends on the sum of delays inherent to negative-feedback loops and inhibitor half-lives. We develop a mathematical model that explores the possibility that positive feedback also plays a role in determining the period of clock oscillations.
View Article and Find Full Text PDFNotochord-derived Sonic Hedgehog (Shh) is essential for dorsoventral patterning of the overlying neural tube. Increasing concentration and duration of Shh signal induces progenitors to acquire progressively more ventral fates. We show that Notch signalling augments the response of neuroepithelial cells to Shh, leading to the induction of higher expression levels of the Shh target gene Ptch1 and subsequently induction of more ventral cell fates.
View Article and Find Full Text PDFDuring somitogenesis, epithelial somites form from the pre-somitic mesoderm (PSM) in a periodic manner. This periodicity is regulated by a molecular oscillator, known as the 'segmentation clock', that is characterised by an oscillatory pattern of gene expression that sweeps the PSM in a caudal-rostral direction. Key components of the segmentation clock are intracellular components of the Notch, Wnt and FGF pathways, and it is widely accepted that intracellular negative-feedback loops regulate oscillatory gene expression.
View Article and Find Full Text PDFBiofilm formation by the Gram-positive bacterium Bacillus subtilis is tightly controlled at the level of transcription. The biofilm contains specialized cell types that arise from controlled differentiation of the resident isogenic bacteria. DegU is a response regulator that controls several social behaviours exhibited by B.
View Article and Find Full Text PDFA segmented body plan is fundamental to all vertebrate species and this bestows both rigidity and flexibility on the body. Segmentation is initiated through the process of somitogenesis. This article aims to provide a broad and balanced cross-species overview of somitogenesis and to highlight the key molecular and cellular events involved in each stage of segmentation.
View Article and Find Full Text PDFObjective: Identify the etiology of elevated B(12) in autoimmune lymphoproliferative syndrome (ALPS).
Design: Peripheral blood of ALPS patients with elevated B(12) and controls were evaluated.
Results: Total and holo-haptocorrin (HC) levels were 26- and 23-fold higher in ALPS patients, respectively.
Background: In 2009, xenotropic murine leukemia virus-related virus (XMRV) was reported in 67% of patients with chronic fatigue syndrome (CFS) compared to 4% of controls. Since then numerous reports failed to detect XMRV in other cohorts of CFS patients, and some studies suggested that XMRV sequences in human samples might be due to contamination of these samples with mouse DNA.
Results: We determined the prevalence of XMRV in patients with CFS from similar areas in the United States as the original 2009 study, along with patients with chronic inflammatory disorders and healthy persons.
Chronic active EBV disease (CAEBV) is a lymphoproliferative disorder characterized by markedly elevated levels of antibody to EBV or EBV DNA in the blood and EBV RNA or protein in lymphocytes in tissues. We present our experience with CAEBV during the last 28 years, including the first 8 cases treated with hematopoietic stem cell transplantation in the United States. Most cases of CAEBV have been reported from Japan.
View Article and Find Full Text PDFIn the vertebrate embryo, tissue blocks called somites are laid down in head-to-tail succession, a process known as somitogenesis. Research into somitogenesis has been both experimental and mathematical. For zebrafish, there is experimental evidence for oscillatory gene expression in cells in the presomitic mesoderm (PSM) as well as evidence that Notch signalling synchronises the oscillations in neighbouring PSM cells.
View Article and Find Full Text PDFThe homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation.
View Article and Find Full Text PDFThe vertebrate segmentation clock is a molecular oscillator that regulates the periodicity of somite formation. Three signalling pathways have been proposed to underlie the molecular mechanism of the oscillator, namely the Notch, Wnt and Fgf pathways. Characterizing the roles and hierarchy of these three pathways in the oscillator mechanism is currently the focus of intense research.
View Article and Find Full Text PDFHensen's node of the chick embryo contains multipotent self-renewing progenitor cells that can contribute to either the floor plate or the notochord. Floor plate cells are a population of epithelial cells that lie at the ventral midline of the developing neural tube, whereas the notochord is a rod of axial mesoderm that lies directly beneath the floor plate. These two tissues serve as a source of a potent signalling morphogen, sonic hedgehog (Shh), which patterns the dorsoventral axis of the neural tube.
View Article and Find Full Text PDFSegmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways.
View Article and Find Full Text PDFObjective: To determine if self-reported levels of physical activity and fatigue are related to peak oxygen uptake (VO(2peak)) and whether these relationships differ among the patient groups (rheumatoid arthritis [RA], polymyositis [PM], and chronic fatigue syndrome [CFS]).
Design: Correlational investigation.
Setting: Two ambulatory research clinics at the National Institutes of Health, Clinical Center, Bethesda, MD.
Background: During vertebrate embryogenesis, somites are generated at regular intervals, the temporal and spatial periodicity of which is governed by a gradient of fibroblast growth factor (FGF) and/or Wnt signaling activity in the presomitic mesoderm (PSM) in conjunction with oscillations of gene expression of components of the Notch, Wnt and FGF signaling pathways.
Principal Findings: Here, we show that the expression of Sprouty4, which encodes an FGF inhibitor, oscillates in 2-h cycles in the mouse PSM in synchrony with other oscillating genes from the Notch signaling pathway, such as lunatic fringe. Sprouty4 does not oscillate in Hes7-null mutant mouse embryos, and Hes7 can inhibit FGF-induced transcriptional activity of the Sprouty4 promoter.
Somites are embryonic precursors of the ribs, vertebrae and certain dermis tissue. Somite formation is a periodic process regulated by a molecular clock which drives cyclic expression of a number of clock genes in the presomitic mesoderm. To date the mechanism regulating the period of clock gene oscillations is unknown.
View Article and Find Full Text PDF