Nitrous oxide (NO) emissions are an important component of the greenhouse gas budget for turfgrasses. To estimate NO emissions and global warming potential, the DAYCENT ecosystem model was parameterized and applied to turfgrass ecosystems. The annual cumulative NO emissions predicted by the DAYCENT model were close to the measured emission rates of Kentucky bluegrass ( L.
View Article and Find Full Text PDFJ Environ Qual
December 2006
Urban ecosystems are rapidly expanding and their effects on atmospheric nitrous oxide (N2O) inventories are unknown. Our objectives were to: (i) measure the magnitude, seasonal patterns, and annual emissions of N2O in turfgrass; (ii) evaluate effects of fertilization with a high and low rate of urea N; and (iii) evaluate effects of urea and ammonium sulfate on N2O emissions in turfgrass. Nitrogen fertilizers were applied to turfgrass: (i) urea, high rate (UH; 250 kg N ha(-1) yr(-1)); (ii) urea, low rate (UL; 50 kg N ha(-1) yr(-1)); and (iii) ammonium sulfate, high rate (AS; 250 kg N ha(-1) y(-1)); high N rates were applied in five split applications.
View Article and Find Full Text PDF