Publications by authors named "Dale Green"

Perylene diimide (PDI) dimers and higher aggregates are key components in organic molecular photonics and photovoltaic devices, supporting singlet fission and symmetry breaking charge separation. Detailed understanding of their excited states is thus important. This has proven challenging because interchromophoric coupling is a strong function of dimer architecture.

View Article and Find Full Text PDF

Open quantum systems often operate in the non-Markovian regime where a finite history of a trajectory is intrinsic to its evolution. The degree of non-Markovianity for a trajectory may be measured in terms of the amount of information flowing from the bath back into the system. In this study, we consider how information flows through the auxiliary density operators (ADOs) in the hierarchical equations of motion.

View Article and Find Full Text PDF

Vibrational coherences in ultrafast pump-probe (PP) and 2D electronic spectroscopy (2DES) provide insights into the excited state dynamics of molecules. Femtosecond coherence spectra and 2D beat maps yield information about displacements of excited state surfaces for key vibrational modes. Half-broadband 2DES uses a PP configuration with a white light continuum probe to extend the detection range and resolve vibrational coherences in the excited state absorption (ESA).

View Article and Find Full Text PDF

Knowledge of relative displacements between potential energy surfaces (PES) is critical in spectroscopy and photochemistry. Information on displacements is encoded in vibrational coherences. Here we apply ultrafast two-dimensional electronic spectroscopy in a pump-probe half-broadband (HB2DES) geometry to probe the ground- and excited-state potential landscapes of cresyl violet.

View Article and Find Full Text PDF

We show that the second-order, two-time correlation functions for phonons and photons emitted from a vibronic molecule in a thermal bath result in bunching and antibunching (a purely quantum effect), respectively. Signatures relating to phonon exchange with the environment are revealed in photon-photon correlations. We demonstrate that cross-correlation functions have a strong dependence on the order of detection giving insight into how phonon dynamics influences the emission of light.

View Article and Find Full Text PDF

In this work we undertake a systematic study of the optical chirality density of Laguerre-Gaussian and Bessel laser beams tightly focused into nanoscale volumes. In particular we highlight the unique contributions to optical chirality from longitudinal electromagnetic fields, light that is polarised in the direction of propagation. The influence that polarisation, spin and orbital angular momentum, radial index, degree of focusing, and diffraction has on the optical chirality is studied.

View Article and Find Full Text PDF

We elucidate the influence of the system-bath boundary placement within an open quantum system, with emphasis on the two-dimensional electronic spectra, through the application of the hierarchical equations of motion formalism for an exciton system. We apply two different models, the Hamiltonian vibration model (HVM) and bath vibration model (BVM), to a monomer and a homodimer. In the HVM, we specifically include the vibronic states in the Hamiltonian capturing vibronic quenching, whereas in the BVM, all vibrational details are contained within the bath and described by an underdamped spectral density.

View Article and Find Full Text PDF

Blue light absorbing flavoproteins play important roles in a variety of photobiological processes. Consequently, there have been numerous investigations of their excited state structure and dynamics, in particular by time-resolved vibrational spectroscopy. The isoalloxazine chromophore of the flavoprotein cofactors has been studied in detail by time-resolved Raman, lending it a benchmark status for mode assignments in excited electronic states of large molecules.

View Article and Find Full Text PDF

Flavoproteins are important blue light sensors in photobiology and play a key role in optogenetics. The characterization of their excited state structure and dynamics is thus an important objective. Here, we present a detailed study of excited state vibrational spectra of flavin mononucleotide (FMN), in solution and bound to the LOV-2 (Light-Oxygen-Voltage) domain of phototropin.

View Article and Find Full Text PDF

The focus of this work is on a microscopic quantum electrodynamical understanding of cumulative quantum effects in resonance energy transfer occurring in an isotropic and disordered medium. In particular, we consider quantum coherence, defined in terms of interferences between Feynman pathways, and analyze pure-amplitude and phase cross terms that appear in the Fermi golden rule rate equation that results from squaring the matrix element for mediated energy transfer. It is shown that pure-amplitude terms dominate in the near-zone when chromophores are close in proximity to one another (within a few nanometers), and phase cross terms dominate toward the far-zone when phase differences between different Feynman pathways begin to emerge.

View Article and Find Full Text PDF

Non-Markovian effects in open quantum systems are central to understanding spectral lineshape. Here, we quantify the non-Markovianity associated with both overdamped and underdamped vibrations in terms of information flow between the bath and the system and compare this with the broadening and ellipticity of two-dimensional spectra. Using the Breuer Laine Piilo (BLP) measure, we link the well-known stochastic models for spectral lineshape with modern quantum information theory.

View Article and Find Full Text PDF

Background: A telestroke program, known as the Remote Evaluation for Acute Ischemic Stroke program, has been implemented in Georgia since 2003. This study examined whether a hospital's participation in a telestroke network was associated with improvement in clinical outcomes and quality indicators.

Methods And Results: An observational study was conducted using data from the Georgia Coverdell Acute Stroke Registry between September 2005 and September 2016 for patients aged ≥18 years with ischemic stroke.

View Article and Find Full Text PDF

The excited-state energy levels of molecular dimers and aggregates play a critical role in their photophysical behavior and an understanding of the photodynamics in such structures is important for developing applications such as photovoltaics and optoelectronic devices. Here, exciton transitions in two different covalently bound PBI dimers are studied by two-dimensional electronic spectroscopy (2DES), a powerful spectroscopic method, providing the most complete picture of vibronic transitions in molecular systems. The data are accurately reproduced using the equation of motion-phase matching approach.

View Article and Find Full Text PDF

Two-dimensional optical spectroscopy is a powerful technique for the probing of coherent quantum superpositions. Recently, the finite width of the laser spectrum has been employed to selectively tune experiments for the study of particular coherences. This involves the exclusion of certain transition frequencies, which results in the elimination of specific Liouville pathways.

View Article and Find Full Text PDF

Over the course of a single year, Cornerstone Health Care, a multispecialty group practice in North Carolina, redesigned the underlying care models for 5 of its highest-risk populations-late-stage congestive heart failure, oncology, Medicare-Medicaid dual eligibles, those with 5 or more chronic conditions, and the most complex patients with multiple late-stage chronic conditions. At the 1-year mark, the results of the program were analyzed. Overall costs for the patients studied were reduced by 12.

View Article and Find Full Text PDF

Objectives: The number and types of inpatients given inadequate prophylaxis for venous thromboembolism (VTE) are not known; patients receive less than appropriate prophylaxis with some frequency.

Methods: Initially we evaluated VTE prophylaxis at a community hospital by comparing prophylaxis patterns in adult inpatients for whom some prophylaxis was indicated. Patients were categorized as medical, general surgery, and orthopedic, then categorized as "appropriate," "suboptimal," or "none" in terms of VTE prophylaxis.

View Article and Find Full Text PDF