Acrolein hydrolysis byproducts are a part of good industrial stewardship practice. Aqueous acrolein is used worldwide as an industrial raw material, an herbicide, an oilfield biocide, a hydrogen sulfide scavenger, and a molluscicide. Industrial acrolein is obtained by the catalytic oxidation of propylene followed by aqueous absorption and then by distillations.
View Article and Find Full Text PDFChlorosulfonyl isocyanate (CSI) is reported to react with hydrocarbon alkenes by a stepwise dipolar pathway to give N-chlorosulfonyl-β-lactams that are readily reduced to β-lactams. Substitution of a vinyl hydrogen for a vinyl fluorine changes the dynamics for reaction with CSI so that a concerted pathway is favored. Rate constants were measured for reactions of CSI with monofluoroalkenes and some hydrocarbon alkenes.
View Article and Find Full Text PDFConcerted reactions are indicated for the electrophilic addition of chlorosulfonyl isocyanate with monofluoroalkenes. A vinyl fluorine atom on an alkene raises the energy of a stepwise transition state more than the energy of the competing concerted pathway. This energy shift induces CSI to react with monofluoroalkenes by a one-step process.
View Article and Find Full Text PDFReactions of chlorine (Cl(2)) with 4-halo-1,1,2-trifluorobut-1-enes (1, 2, or 3) give open-ion intermediates A and E that are in equilibrium. The open-chloronium ions (E) rearrange to a five-membered-ring halonium ion during ionic chlorination of 3 when the number-4 halo-substituent is iodine. Three-membered-ring bromonium and iodonium ions from alkenes 1, 2, or 3 are rather symmetrical and similar in structure.
View Article and Find Full Text PDFOur paper reports on the reactivities and orientations of two common phenols, phenol (2) and m-cresol (3), and some of their chlorinated intermediates with aqueous monochloramine, NH2Cl, and dichloramine, NHCl2. We also examined the further reactivity of 2,4,6-trichlorophenol (4) with the chloramines. The phenols are an important area of investigation because they are substituents in the humic acids and are common contaminants in water.
View Article and Find Full Text PDFIonic reactions of terminal alkenes with chlorine (Cl(2)), bromine (Br(2)), and iodine monochloride (ICl) are sensitive to the alkyl substituents, and the positions and number of vinyl fluorine atoms. These perturbations influence the symmetry of the halonium ion intermediates, which can be determined by the distribution of the Markovnikov to anti-Markovnikov products. A vinyl fluorine on the number-2 carbon favors an unsymmetrical intermediate with greater charge on the number-2 carbon unless the alkyl group is electron withdrawing.
View Article and Find Full Text PDFJ Org Chem
September 2002
2,4,6-Trichlorophenol (2) and 2,4,6-trichloro-m-cresol (5) react with calcium hypochlorite (Ca(OCl)(2)) in MeOH to give respectively dimer-type ketals 2-(2',4',6'-trichlorophenoxy)-4,4-dimethoxy-6-chlorocyclohexadien-2,5-one (6) and 2-(3'-methyl-2',4',6'-trichlorophenoxy)-4,4-dimethoxy-5-methyl-6-chlorocyclohexadien-2,5-one (7). Ketal 6, which was too unstable to be isolated, and 7 hydrolyzed in H(2)O/HCl to 2-(2',4',6'-trichlorophenoxy)-6-chloro-1,4-benzoquinone (8) and 2-(3'-methyl-2',4',6'-trichlorophenoxy)-5-methyl-6-chloro-1,4-benzoquinone (9), respectively. Ketal 6 and quinone 8 were also produced when 2 and Ca(OCl)(2) reacted in DMF, followed by addition of MeOH and H(2)O, respectively.
View Article and Find Full Text PDFThe reactions of 3-butyn-2-one (1), 3-hexyn-2-one (2), and 4-phenyl-3-butyn-2-one (3) with bromine chloride (BrCl) and iodine monochloride (ICl) in CH(2)Cl(2), CH(2)Cl(2)/pyridine, and MeOH are described. The data show that the major products in CH(2)Cl(2) are (Z)-AM (anti-Markovnikov) regioisomers. With the exception of 3 and ICl, the (E)-AM regioisomers predominate when pyridine was added as an acid scavenger.
View Article and Find Full Text PDF